

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

1

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

Acceptance Test Driven Development in Web Based Banking Applications
1Nosheen Khan,

Department of Computer Science,

Internal Islamic University, Islamabad, Pakistan

E-mail: 1nosheen.msse357@iiu.edu.pk

2Ahthasham Sajid

Department of Computing

SZABIST, Islamabad, Pakistan

E-mail: 2gullje2008@hotmail.com

3Natasha Khan and 3Shayan Ejaz

Department of Computer Science

COMSATS Institute of Information Technology, Islamabad, Pakistan

E-mail: 3kevaa.92@gmail.com

3shayan.ejaz91@gmail.com

ABSTRACT

Banking sectors have transitioned from old style core banking procedures to the new era by implementing IT infrastructure as it

sheer brute force to reach the corporate and random clients at their desks. E-banking services have moved ahead of being just a

mere ATM card to mobile wallets and internet banking accounts to be accessed from the most remote areas of the world without

any limitation of time. The banking industry has switched to web based applications in order to achieve reliability and

efficiency. Products ranging from wallet cards to premium term financing has been enabled at just a few keyboard clicks for the

customer. Banking sector has developed into one of the most profitable and wide client sector for the software industry by

providing high scope industry based projects to be developed as well as hiring their services for the support. For the

development of such systems, software houses adopt different development processes. In this paper we evaluate the efficiency

of using Acceptance Testing driven development process in web based applications in the banking industry by defining a failed

banking industry project and how it was re-modeled and re-developed using the acceptance driven development techniques

ultimately proving to be a financially profitable solution.

Keywords: E-banking; extreme programming; agile; test driven development.

1. INTRODUCTION

During the last several years, multi-national companies and

customer oriented structures such as banking sector has

transitioned much of its operations to the web based solutions.

Web-based solutions allow banks and credit unions to reduce

operation costs and increase efficiency by reducing

manpower, cutting the cost of IT overhead and are easily

tailored to fulfill the requirements. These web based solutions,

generally websites, include variety of options to be provided

to the customers such as Online banking, funds transfer,

Automatic Teller Machines, Mini Statements, Mobile Banking

and Channel banking. Banks have decided to target the

corporate clients as well as the ordinary users who only have 2

to 3 transactions in a month enabling it to address wide and

multi cultured array of customers. Electronic Banking

solutions have been provided to the customers enabling the

banks to reach the customers’ desks. These all e-banking

solutions can be merged to form a single bank website that

allows all these facilities to the customers just by a few clicks.

To develop these websites different types of practices are used

by the development teams that include Agile Methodologies,

Scrum, and Incremental Models and sometimes even Extreme

Programming.

While developing a website for a bank that will be hosting

such mission critical systems that involves customer’s money

as well as 24 hour customer interaction such as e-banking

services, it is very important for the development teams to

adopt proper methodologies to ensure user acceptance in order

to ensure the efficiency of the system. Development teams that

select agile methodologies easily accommodate the changes

that user suggests. Successful Web-based system development

and deployment is a process, not just an event as currently

perceived and practiced by many developers and academics

[8]. A bank’s website was developed by a software house by

just collecting random user stories from the bank’s staff and

no proper requirement gathering or elicitation was done in

order to start the development. After 4 months of development

mailto:1nosheen.msse357@iiu.edu.pk
mailto:2gullje2008@hotmail.com
mailto:3kevaa.92@gmail.com
mailto:3shayan.ejaz91@gmail.com

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

2

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

and almost negligible testing done, the website was finally

launched for the customers to access the e-banking solutions

hosted by the bank. The project was a complete disaster with

lots of bugs in the system and Users found it very difficult to

use. The IT department received hundreds of error log forms

which ultimately ended up in the system being called off.

This paper describes the advantage of using Test driven

development in industrial environment, in the process of re-

developing the website for the bank to host its e-banking

services in a much efficient way. Test Driven development is

the practice of writing tests for a software module and then

using the tests as a guide for writing reliable implementation

for the software module. This methodology is known as test

first development [2]. For the re-development, Acceptance

testing driven development was used so that the new system

completely fulfills the requirements of not only the bank staff

but the end user as well. Acceptance test driven development

is characterized by acceptance tests written by customers

usually with the help of the development team to drive the

software development process, i.e. only when the test cases

are specified, programmers start writing the functional code to

satisfy those test cases [3]. For development of a system that

should ensure the highest degree of Usability and Learnability,

Acceptance Test driven development ensures that all the test

cases provided are catered. Evaluation data and reviews from

the end users are formulated to prove the effectiveness of

Acceptance testing driven development in the given

environment.

2. RELATED WORK

(ATDD) is a software development technique to develop

software in increments. In this technique, test cases are

specified before the functional code [3]. Two rules defined by

Kent beck for Test Driven Development (TDD) are as follows:

The first principle which is also the foundation for the TDD

methodology is that a developer first needs to write a test and

then the implementation code. Refactoring, the second

principle of TDD is to improve the code without

introducing/making any change in the existing functionalities

[9].

Programmers can start writing the functional code after the

identification of the test cases to gratify these tests. In test-

driven software development processes testing starts from the

preliminary development stages which further drives to the

full development process. [3]

TDD seemed as one of the most successful development

practices in literature to write clean and flexible code on time

[3]. ATDD is found very useful (tool/technique/methodology)

to outline the project’s scope and validate the requirements in

a very unpretentious manner during the specification phase. It

provides better understanding of the requirements to

developer. [4]

Our goal is to show a specific actual development process

where these practices were successfully applied [3].If our

challenges are time constraints, lack of domain knowledge and

Lack of specifications than we can go for ATDD [3].

A test-driven development technique helps software and

business related people to create unambiguous and clear-cut

requirements hence assisting the organization to deliver

precisely what the customer wants. TDD allows the users to

maintain the code easily, and to evaluate and implement the

changes in fast and effective way. The code is clear and

simple, the tests have all the information required for the

requirement, and hence, there is no need to review the

documents in it [3].

TDD provides comparatively better reliability then traditional

development approaches [9]. ATDD requires a wide support

from the customer to clearly capture and validate the

requirements. ATDD increases interactions between

customers and developers, advances production, reduce

defects and permits to automatically test software at the

business level. [3] TDD is effective for any project type, size

and environment [9]. ATDD needs lesser time for initial

detailed design than those of traditional methodologies

because the initial design is less formal. The detailed design

ascends and grows with time or during the work cycle [3].

Availability and using of the automated testing tool is

mandatory for ATDD [9].

For the team to use ATDD, they must know specific tools that

enable ATDD [5]. There are several test automation tools in

the market like JFCUnit, Selenium, FitNesse, Autolt, Proven

[1]. Switching to the test-first approach or TDD doesn’t

guaranties one to find solution quickly or more speedy.

[R1]TDD increases the quality of software but decreases the

productivity [3].

In comparison of TDD projects with non-TDD projects, the

total number of unseen bugs are lower in TDD projects,

because the errors were found mostly during the execution of

the unit tests. TDD approach increases customer’s satisfaction

because it condense the errors (which is) left to be found in

future testing, hence the number of errors found by the

customer are very low during the rollout. The code generated

from TDD is of high quality because of constant integration

and verification of the code as well as the internal quality in

terms of the number of lines of code (LOC). The code size is

clearly smaller [7].

In reality, it’s not easy to attribute whether the success of a

project is due to ATDD adoption or to other factors like the

presence of the customer representative, the capability of the

new development team, etc. In many cases ATDD or UTDD

are not usually applied in commercial projects because the

prevalent idea that they are costly and uncertain [3].

The paper is organized as follows. Section 2 gives an

overview of the Acceptance Testing Driven Development.

Section 3 presents the project background and explains the

factors that lead to the adoption of Acceptance Testing Driven

Development. Section 4 describes how the ACTD techniques

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

3

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

were implemented in the system. Section 5 presents the results

and draws the conclusion.

ATDD stands for acceptance test driven development. In

ATDD developers first write the automated test cases for any

new functionality and then writes the functional code to satisfy

the test cases. [3] Acceptance TDD helps the team to deliver

exactly what the customer wants when they want it.

It is a technique where the customer is involved before coding

has begun. ATDD is a collaborative practice where users,

testers, and developers define automated acceptance criteria. It

helps to ensure that all project members understand precisely

what needs to be done and implemented. Failing tests provide

quick feedback that the requirements are not being met.

ATDD has many advantages over other development

methodologies like it provides better communication between

the business and development teams, comforts developer to

get improved understanding of the requirements. Defects are

caught in the early stages of software development, ATDD

provides testable code, which is easy to maintain and is of

high quality. ATDD approach can decrease defect density for

approximately 40 %.

From the productivity point of view, the use of ATDD has

positive and negative effects it takes 16% more time for

development. [9] Implementing automated ATDD is a whole

lot of work, some of which is quite technical and requires the

effort of everyone from the development team. ATDD is

problematic to use and demands a high level of discipline

from the developers. The most difficult part is to understand

the need of writing unit test ahead of time in ATDD and the

importance of the fast incremental cycles between writing

failing unit tests and writing functional code to pass these

tests. [3]

3. DEVELOPMENT THROUGH EXTREME

PROGRAMMING

The bank’s executives took an initiative to launch the e-

banking services as it was a condition implemented by the

Governing body. To launch such a mission critical system that

will involve finance of the bank as well customer’s money, the

bank contacted several software houses so that they may

submit their proposals and quotations in order to develop the

website. As it included a tender system, the bank opted for the

bid that involved the lowest cost with the highest number of

features additionally added to the bank’s requirements,

without any information regarding what technology and

development cycle will be used.

The contract was allocated on the basis of features and amount

of time that will be taken to complete the project. The

requirement engineer sent by the software house was

communicated incomplete requirements in the form of user

stories because there was no technical individual having

expertise to define the bank’s and customers’ requirements in

a proper manner. The software house opted extreme

programming to develop the website as it involved user

stories. The requirements were informally noted down on 2-3

sheets of paper, more over they were simply written user

stories communicated by the core banking staff.

The Software house was not provided the proper user

requirements that were required to develop the website, they

still started the development process giving no priority to the

fact that the system they were developing will have end users

that would include illiterates and liegeman that might have

never used such systems or would not be having the technical

knowledge possessed by the core banking staff that had

communicated the user stories. The requirements were not

base lined. This was because every other day the bank staff

sent e-mails so as to change specific requirements and

transform them into some new ones. No end user was involved

on the time of conveying the requirements ultimately ending

up in the system being developed taking the usage abilities of

the banking staff into consideration.

The system was tested by the developers, the main core

banking functionalities seemed fine and the optimum level for

the functional requirements was achieved. The Graphical user

interface was very specific and seemed difficult to be used. It

included terms and options that were generally known to only

the bank staff. 3 officers form the bank staff tested the system,

having expertise from three separate areas of the banking

field. The system was tested having main focus on the

accounts, finance and modules integration. No bank’s

representative gave priority to the Graphical user interface

taking into consideration that whether the end users will be

able to use it efficiently or not.

The system passed the test cases developed by the accounts

and finance division of the bank. The Quality assurance

department cleared it to be launched and deployed at the

earliest. The system was made live and the bank’s customers

were informed about the newly e-banking services launched

by the bank. To subscribe the new facility, the customers were

charged as well. For the Quality assurance, a system was

introduced, it included that if a customer experienced an error

or bug in the system there will be a log form available on the

website. Customer will fill the log form and forward that to

the bank either on the website or it can be submitted in a

printed form as well. This was done to ensure the quality of

the system because customers were charged 0.25$ per month

plus it included separate charges per transaction. To use the

facilities the customers were assigned user ids and passwords.

The system was launched with all the facilities for the

customers. The newly launched system highly attracted the

customers and more than 55% of the customers signed in for

the system in the first month (Value taken form the Annual

report of the bank). The system started to show its negligence

and only in the second month the IT department of the bank

started receiving Error Log forms. The customers were not

able to use the system properly and there was no support

available either from the bank’s IT department or the bank

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

4

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

staff. In a course of 3 months hundreds of error forms were

reported which included the issues mainly on Usability and

functionality bugs.

In such a deteriorating condition, the Bank hired 3 resources

and setup an e-banking department to thoroughly inspect the

issues. In the inspection report it was discussed that the main

reasons for the system to fail was the use of extreme

programming technique for developing such a mission critical

system. There was no proper requirement elicitation and the

requirements that were gathered did not include any

participation from the end users. The bank management

ultimately decided to call off the website and instructed the e-

Banking department to launch a new re-modeled website

fulfilling all the technical requirements. E-Banking department

decided to include the end user views for the development life

cycle ultimately choosing Acceptance Testing Driven

Development process.

4. DEVELOPMENT THROUGH ATDD

APPROACH

The E-banking department hired a new and reputable software

house for the re-development of the existing system but with

mutual understanding and considering the performance

constraints of the existing system it was decided that the

system will be developed from the scratch using the

Acceptance testing driven development to involve the end

users, in this case the bank customers. 7 users from different

working environment and educational backgrounds were

requested by the bank to allocate 2 hours on a weekend. With

that the e-banking department acquired 3 experienced core

banking personnel from the head office having a minimum

experience of at least 7 to 8 years to ensure thorough

understanding of the core banking. The time duration for

requirement elicitation was decided to be 3 weeks. Software

are evaluated by measuring the quality of attributes such as

reliability, usability, and maintainability, yet academics often

fail to acknowledge that the basic economics behind software

production has a strong impact on the development process

[8].

In the first phase, the functional requirements were elicited

with detailed discussions with the banking personnel and the

requirements were noted down on a proper file template.

Further on this requirement document was forward to the bank

departments’ heads to ensure the functionalities to be accurate.

There were minor changes that were easily incorporated. The

functional requirements involved transactions of every

module, the credit and debit transactions, basic banking

account details, formats of Mini statement and balance

statements, procedures of account linking and de-linking, term

financing and further on linking the ATM cards and credit

cards with the online accounts provided to the users by the

bank.

The second phase involved the requirements for the Graphical

user interface; therefore the end users were invited at the

bank’s head office. These users were frequent users of

banking services. It was made sure that some of them

possessed ATM cards while the others possessed Credit cards.

One of these users was educated only till the 8th standard and

represented the community that might use such a high tech

system for the first time. There were some paper sketch

prototypes prepared by the requirement analysts using and

improving the pre-built called off system. The users suggested

many changes which they found that would enable them to use

the functionalities much efficiently. The new added

requirements by the customers in the form of user stories were

transformed into proper user requirements by the requirement

analysts and the next week again, i.e. in the next iteration the

formulated requirements were discussed with the end users.

All the requirements were base lined and added to the SRS

document. The final SRS document was then circulated to all

the department heads and to the Software House.

In the third phase the requirements team using the SRS

document prepared a Usage model for the system. Diagram

4.1 shows the usage model prepared for the system. The usage

model was then further used by the Quality assurance team to

develop the test cases for all the iteration of the usage model

to ensure that each and every path is addressed and tested. The

development life cycle was the acceptance testing driven

development; therefore all the test cases were prepared and

automated prior to the start of the development process. The

test cases that were prepared were then discussed with the e-

banking department for the authenticity of the test cases.

The fourth phase was the design and development phase. The

coding teams were allocated the test cases that were relevant

to their assigned tasks. The coding was done in a way that it

fulfills all the test cases concerned to its domain. The domains

were mainly core banking and graphical user interface. The

core banking domain was developed by an entire separate

team than the one developing the Graphical user interface of

the banking website. Once a certain domain module was

implemented and the test cases were executed and cleared, the

Domain representatives, i.e. the end users or the banking

personnel were informed and invited to perform the final

testing of the module and to suggest any further changes.

Fewer changes were incorporated because the test cases were

expertly generated from the usage model and the testing team

comprised of some highly skilled and experienced testers. The

tool used for generating and executing the test cases was

FITNESSE. FitNesse is a test automation tool based upon the

Fit test framework [1].

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

5

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

FIG. 5.1 shows the number of bugs that were reported for both the systems in

the first 6 months of their first implementation.
Fig. 4.1 Usage Model Created By the Test Team to Formulate the Test Cases.

After the completion of the fourth phase, the website was then

deployed for a test run and the 7 users that were invited for the

requirements phase were allowed to use the website for a

week. An additional week was included for the banking staff

to ensure the domain functionalities operable at an optimum

level. After a process of 3 months the system was re-launched

with the customers being notified to start reusing the system

and to compensate the time wastage the users that had

previously availed the e-banking facility were allowed 3

months free usage of the system.

5. CONCLUSION

The system was re-launched keeping in view the risks

involved and the reputation loss that the bank suffered

previously. The e-banking was solely assigned to look after

the functionalities. The e-banking team comprised of 3

resources that were very experienced coders and knew a lot

about the core banking functionalities as well as the system

domains. To ensure the quality of the system, Standards of

procedures (SOPS) were also available in the website portal

for the user s to enable them solutions to the problems faced

by the end users. The wide domain of the website was

summarized into 5 bug domains which further included all the

functionalities that were available for the users. These

domains included Login bugs, e-banking bugs, Core banking

Bugs, GUI bugs and the security risk bugs.

After the launch of the website, the first month’s response of

the website was a very good one where almost negligible bugs

were reported by the customers. The e-banking department

decided to extend the analysis phase from one month to six

months so that a total comparative analysis could be done with

the previously built system. After six months of analysis the

bugs reported by the customers were compared with the bugs

that were reported for the previously built system.

Comparatively, very less number of bugs were reported for the

new system and the bugs that were reported, the changes to

incorporate the bugs were addressed very easily. E-banking

department provided a full time support to the customers

providing them assistance in the learnability and usability

issues. Figure 5.1 portraits the comparative study and the

empirical results that were collected.

The comparative analysis report for the first 6 months for both

the systems revealed that the re-developed system had less

number of flaws in it and the user satisfaction level increased

significantly enabling the bank to attract more customers. The

use of Acceptance testing driven development enabled the end

users requirement to be addressed at each and every level of

the development process ultimately resulting in development

of such a mission critical system. Acceptance testing not only

involved the Test cases developed by the Bank personnel or

the end users, but the test cases that were generated by the

senior quality assurance resources ensuring the effectiveness,

reliability and learnability of the system.

The study gave an overview of the usage of extreme

programming and acceptance testing driven development in

the banking industry. Extreme programming is not

recommended to be used in the banking sector where end user

and core banking staff is involved. Whereas at the banking

sector and the industrial level, Acceptance testing driven

development is recommended for the projects that shall have a

user array comprising of all age levels, educational

backgrounds and financial conditions as the end user

requirements and the core functionalities are equally

addressed.

REFERENCES

[1] Marian JURECZKO, and Michal MLYNARSKI.

"Automated Acceptance Testing Tools for Web

Applications Using Test-Driven Development."

PRZEGLĄD ELEKTROTECHNICZNY (Electrical

Review), ISSN 0033-2097, R. 86 NR 9/2010 (2010)I.

S. Jacobs and C. P. Bean, “Fine particles, thin films and

exchange anisotropy,” in Magnetism, vol. III, G. T.

Rado and H. Suhl, Eds. New York: Academic, 1963,

pp. 271-350.

[2] Test-Driven Development. (2008). Software

Development Rhythms, 265-289.

[3] Latorre, R. (2013). A successful application of a Test-

Driven Development strategy in the industrial

environment. Empirical Software Engineering Empir

Software Eng, 753-773.

[4] Kam, Ben, and Thomas R. Dean. "Lessons learned

from a survey of Web Applications Testing."

Information Technology: New Generations, 2009.

ITNG'09. Sixth International Conference on. IEEE,

2009.

[5] M. Alalfi, J. R. Cordy, and T. R. Dean, A Survey of

Analysis Models and Methods in Website Verification

and Testing, Proc 7th International conference on Web

©2012-16 International Journal of Information Technology and Electrical Engineering

TEE, 5 (2) pp. 1-6, APR 2016

6

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 2
April 2016

Engineering (ICWE2007). Como, Italy July 2007,

pp.306-311.

[6] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, Lori

Pollock, Automated Relay and Failure Detection for

Web Applications, Proceedings of the 20th IEEE/ACM

International Conference on Automated software

engineering ASE '05. November 2005

[7] Lyons, R. (2007). A Survey of Analysis Models and

Methods in Website Verification and Testing.

Reston, Va.: [American Society of Engineers].

[8] Kazimierz Worwa, and Jerzy Stanik. Journal of Internet

Banking and Commerce. N.p.: Journal of Internet

Banking and Commerce, December 2010, Vol. 15,

No.3, n.d. Web.

[9] Aleksandar Bulajic, and Samuel Sambasivam.

"Overview of the Test Driven Development Research

Projects and Experiments." Proceedings of Informing

Science & IT Education Conference (InSITE) 2012

(2012)

