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ABSTRACT 
 

Signal processing has varied range of applications ranging from our daily life activities to advanced research in different 

domain. Signal processing is widely involved in  communication, artificial intelligence, advance robotics to the advance bio 

medical applications like ECG, EEG processing etc. In this paper we have studied EEG signal as a part of signal processing for 

diagnostic understanding of epilepsy. Epilepsy is one of the most common neurological disorder with a widespread0.6-0.8% of 

the India’s population[1-2]. Two-third of the patients achieves sufficient seizure control from medicine and some other 8-10% 

benefit from respective surgery. For the remaining 25% of patient no sufficient treatment is currently available[3-7].A fixed 

cluster size approach for epilepsy feature extraction and propose explaining the concepts of the classification of EEG. The 

experiment result showed that fixed cluster epileptic data algorithm can produce a better classification rate than the previous 

reported method by Siluly et al[8]. Which used LS-SVM  forthe extracted features to classify EEG signals. 
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I. INTRODUCTION 
 

 Electro Encephalography (EEG) is the recording of 

electrical activity along the scalp. The EEG measures voltage 

fluctuations from ionic current flowing within the neurons of 

the brain. In clinical terms, EEG refers to the recording of the 

brain's spontaneous electrical activity over a short period of 

time, say 20-40 minutes recorded from multiple electrodes 

placed on the scalp. EEG is the most used technique to capture 

brain signals due to its excellent temporal resolution, 

noninvasiveness, usability, and low set-up costs. An EEG can 

show state of a person. (sleep, awake, anaesthetized, emotion 

,sadness, happiness as the characteristic patterns of the 

electrical potentials differ for different states[9]. 

 

II. EEG Waveforms Analysis 

 

Most of the brain disorders are diagnosed by visual inspection 

of EEG signals. The improvedanalysis techniques of EEG 

signals has lead to improved results in EEG feature extraction 

and classification for epilepsy[13-14]. The recorded brain 

electrical activity is defined in terms of specific descriptors or 

features. EEG analysis focuses on the frequency or 

wavelength of signal and manner of occurrence of voltage 

fluctuation (random, serial, continuous), its dependency on 

reactivity (eye opening, mental task, sensory, bodily gesture, 

affective state) and symmetry  of the signal [10-11]. 

 

III. Nature of rhythms of the EEG signals 

 
For assessing abnormalities in clinical EEGs and for 

understanding functional behavior in cognitive research, the 

frequency is considered to be most important parameter. With 

billions of oscillating communities of neurons as its sources, 

the human EEG potentials are visible as aperiodic 

unpredictableoscillations with irregular burst of oscillations 

which are typically categorized in specific bands such as 0.5-4 

Hz (delta), 8-13 Hz (alpha) 13-30 Hz (beta) and>30Hz 

(gamma).[12] 

 

IV. Classification of EEG signal 
 

In pattern recognition feature extraction is widely used in the 

areasof face recognition, database indexing, image 

recovery,multimedia computation and other model-based 

coding ofimage sequences.The use of the classifier is to 

determine the particular class of a signal. The signal to be 

classified must be defined by features that could be extracted 

from the signal for the purpose of classification [13]. 

 

The classification techniques generally work in two 

stages,where features are extracted from raw EEGdata in the 

first stage and then obtained features areused as the input for 

the classification process in the second stage. It is important to 

note that features are compressed parameters that characterize 

the behavior of the original data[14-15]. In the present study, 

the fixed clustering techniques (FCT) algorithm is used to 

extract feature parameters representing EEG signals from the 

original EEG data. 

 

V. Previous Research 
 

             Till date several techniques have been proposed for 

the classification of EEG signals, and diverse classification 

techniques have been reported in the last decade[39-40]. 

 

              EEG signal classification by support vector machine 

(SVM)can detect whether a subject’s planning to perform a 

task or not[17]. In EEG classification SVMVarious different 

Kernels were utilized to find the best kernel function but it’s 

the more time taking process and inefficient to classify the 

EEG signal. A wavelet-based neural network (WNN)classifier 

for recognizing EEG signals is proposed by Guler et.al 

[17].The Discrete Wavelet Transform (DWT) with the Multi 

Resolution Analysis (MRA) is applied to decompose the EEG 
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signal at resolution components of EEG signal[19][20]. For 

detection of Siluly et.al have processed SVM technique[14]. 

 

VI. Proposed Methodology 
 

            In this paper we propose a new algorithm of the 

Clustering. Fixed cluster size approach is used for classifying 

the EEG signals cluster.Earlier of clustering techniques (CT) 

method was based on variable cluster size the variable cluster 

size resulted in variation of results with number of 

samplesLeast Square Support Vector Machine (LS-SVM)[21-

24]. 

 

This approach is conducted in three steps: acquisition EEG 

signal, determination different of clusters  and feature 

parameters extraction from each cluster. 

 

            Ninefeature parameters are used to classify the 

signals[25]. Each EEG channel data is considered as a 

population which is divided into N groups with a specific time 

duration, called Clusters.  The Cluster size is chosen to 

be20(t=0.2 sec with fs=1000Hz). - In this study, EEG signals 

were classified over  ten set of two subjects each, one epileptic 

and one healthy. The recording time period is fixed of both 

subjects ( healthy and epileptic ).  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Fixed cluster size feature extraction. 

 

Feature extraction plays an important role in pulling out 

special patterns from the original   data for reliable 

classification. The feature extraction stage must reduce the 

original data to a lower dimension that contains most of the 

useful information being included in the original vector[26-

28]. It is therefore, necessary to find out the key features that 

represent the whole dataset, depending on the characteristics 

of a dataset.The nine feature parameters are extracted from 

each cluster data as they are the most representative values to 

describe the original signals[31]. 

 

The nine feature parameters of each cluster of EEG channel 

data are used as the valuable parameters forthe representation 

of the characteristics of the original EEG signals[29-30]. 

 

I Minimum-Minimum value of cluster  

Min=min(Ki),where i=1……….20 

 

II.Maximum-Maximum value of cluster  

Max=max(Ki) where i=1……….20 

 

III.Mean- Mean of the absolute values of each channel signal. 

𝑭𝒊 =
𝟏

𝒏
  𝑺𝒊𝒋 ^𝟐
𝑵

𝒋=𝟏
 

 

IV.Median-). Median value of cluster (k)is(k/2) 

 

V.Mode-Mode value of cluster (k)that is common value of a 

single cluster. 

 

VI.First quartile-First quartile of cluster (k)that is placing 

value of cluster (k/4). 

 

VII. Third quartile-Third-quartile is placing value of cluster 

(k/3). 

 

VIII.Inter-quartile range -Inter-quartileplacing value of 

cluster (k/2). 

 

IX.Standard deviation- Standard deviation of each channel 

signal. 

𝑭𝒊=√(
𝟏

𝑵−𝟏
 𝑺^𝟐𝒊𝒋𝑵
𝒋=𝟏 ) 

(a). Average sample of each channel signal. 

𝑭𝒊 =  𝑺𝒊𝒋 ^𝟐
𝑵

𝒋=𝟏
 

(b). Sampling frequency (Fs) =1000Hz 

(c).  Fixed cluster size of  epileptic signal (k=20) 

 

VII. EEG Data 
 

Healthy subject and epileptic EEG subject are used separately 

to test the performance of the proposed method. In epileptic 

EEG database the data set IV for Brain Computer Interface 

(BCI) [32-38] contain EEG recording from two subjects 

during two kind of  tasks which are the epilepsy and 

healthyhuman. The recording was made using Brain Amp 

amplifier and a 128 channel. Ag/Agcl electrode cap from ECI 
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Fig. 2 Channel placement detail 

118 EEG channel were measured. Analysis have been done 

for each data Here we are taking some fixed channel data 

which are more important for classification of signal. 

Selection of channel are shown in figure (2). 

 

 

 

 

 

 

 

 

 

 

VIII. Flow chart of classification of single 

channel EEG data 
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Cluster Max value of different channel for healthy 

subject 

 
                Fig.2 for channel C2 

 
                 Fig.3 for channel C3 

 
                 Fig.4 for channel FZ 

 
                 Fig.5   for channel OZ 

 

 

 

 

For Cluster max value of different channel 

forEpileptic Subject  

 
                          Fig.6 for channel C2 

 
                           Fig.7 for channel C3 

 
                           Fig.8 for channel FZ 

 
                  Fig.9 for channel OZ 
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Result-Cluster min value of different channel for 

healthy subject 

 
 Fig 10 for channel C2 

 
                         Fig 11 for channel C3 

 
                         Fig 12 for channel FZ 

 
                          Fig 13 for channel OZ 

 

 

 

 

 

 

 

Result - Cluster min value of different channel for    

Epileptic Subject 

 
 Fig 14 for channel C2 

 
                          Fig 15 for channel C3 

 
                          Fig 16 for channel FZ 

 
                Fig 17 for channel OZ 
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Result –Cluster mean value of different channel for 

healthy subject

 
              Fig 18 for channel C2 

 
             Fig 19 for channel C3 

 
                      Fig 20 for channel P 3 

 
                     Fig 21 for channel OZ 

 

 

 

 

 

 

 

 

 

For Cluster mean value of different channel for 

Epileptic Subject 

 
                      Fig 22 for channel C2 

 
             Fig 23 for channel C3 

 
                          Fig 24 for channel FZ 

 
               Fig 25 for channel OZ 

 
 

IX. Result and discussion 

 
In this study, EEG signals were classified over ten set of two 

subjects each,one epileptic and one healthy.For the specific 

channel (Fz, C2, C3, C4, &Oz) the average value of cluster 

feature more  in epileptic subjects.. After classification from 

feature parameters the comparison is done between these two 

subjects average fluctuation is checked by classifying the data. 

In this result also indicate that average fluctuation in epileptic 

higher than the healthy subject. In epileptic signal repeated 

fluctuation occurred in a particular sample valueIt is well 
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evident from these result that epileptic data set can be easily 

identified by method of feature extraction using fixed cluster 

size. In above given result we summarized that the difference 

between the healthy human and epileptic.  
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