

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

7

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

Software Development Lifecycle for Extreme Programming

Aroosa Hameed

Department of Computer Science, University Of Gujrat, Sub Campus Satellite Town, Rawalpindi

E-mail:aroosahameed379@yahoo.com

ABSTRACT

The software engineering offers a chance to the countries to create dramatic improvements in economic development. The

Pakistan software business also plays a significant role in strengthening the economy. Extreme Programming (XP) is an agile

methodology providing quality products and provides a chance to retort to ever-changing client needs. Every software

methodology has its own development cycle consisting of the testing part at the tip of the event. To find an answer of ever

dynamical requirements, developing a framework which will consists testing at each phase to realize the international standards.

Also, providing an accurate roadmap of the framework. Careful review of XP literature area unit typically done to spotlight

problems like requirement changes at the tip of development. Existing XP models are studied to determine their strengths and

weaknesses and ultimately projected a new XP framework with testing as fundamental part is conferred to resolve addressed

problems. The proposed framework makes XP be useful for small teams of specialists, who are able to communicate well with the

end-users and who are smart designers and implementers thus providing productivity and maintenance practices for developing

quality products which could facilitate to comprehend the international standards.

Keywords: Software Development Life Cycle (SDLC), XP, Agile methodologies

1. INTRODUCTION

 Software Development Life Cycle (SDLC) is a

strategy of constructing or maintaining software systems [1].

Commonly, SDLC incorporates phases from investigation to

developed code, testing and maintenance. Different

methodologies are utilized by development groups to build up

the products and these methodologies shapes the framework

for the whole development method. As of now, there are two

SDLC strategies which are utilized by most system

developers, specifically the traditional development and agile

development [2].

Software methodologies like Waterfall, Vee-Methodology and

Rational Unified Process (RUP) are called traditional software

development methodologies and these are classified as

heavyweight methodologies [3]. These

Methodologies supported a sequential series of development

steps. There are four phases which are characteristic of the

traditional software development approach. The primary stage

is to assemble the prerequisites from clients toward the start of

the undertaking. Once the prerequisites are taken off, the

future step is the design and architectural planning where a

technical infrastructure is shown in the form of diagrams.

Once the team is satisfied with the design plan, the next phase

of the project is the development phase where code is

composed. The testing phase may overlap with the

development phase to guarantee issues can be determined

before.

The traditional software development methods are dependent

on a set of predetermined processes. The achievement of a

project which is approached in this manner relies on knowing

the greater part of the requirements before the development of

the project begins, means that if any client need is altered

throughout the development lifecycle will generate the issues.

Agile development depends on the idea of incremental and

iterative development, in which stages within a development

life cycle are checked on. In this methodology software is

enhanced iteratively by using client input to converge on

solutions [4]. In agile methodologies, the life cycle of software

development is divided into smaller parts, called “increments”

or “iterations”, in which each of these increments work on

each of the stages of development. The major factors of agile

are: Initial customer involvement in the project, Iterative

approach of development, Self-organizing groups, Adaptation

to change. There are as of now six techniques that are

recognized as agile development strategies, which are: Agile

Crystal methodologies, agile dynamic software development

methodology, feature-driven development method, lean

software development, scrum, extreme programming.[5]

Extreme Programming (XP) is one of numerous new

lightweight software development life cycle methodologies.

XP is used to create intricate large scale software of

satisfactory quality in a reasonable measure of time. XP is

characterized by values, activities, and practices. XP gives a

very close coordination between the programmers and the

clients.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

8

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

The client defines the significance of the software that is to be

created and provides the prerequisites as client stories. A user

story is a non-technical representation of how the user will

utilize the system/program to fulfill the business needs.

The software engineer reacts with an estimate of the time to

deliver a prototype that may meet the minimum requirements.

At initial, the estimate will be very rough yet with successive

iterations, it becomes dependable. In the iterations, the client

gives input that how much the software has addressed their

needs and what additional user stories are required for the next

iteration. The developer also keeps the client educated about

the technical risks of executing every story. After deployment,

XP can still give value by utilizing refactoring means

enhancing code without changing the system output to

enhance efficiency and have built-in testing to guarantee the

code quality under the maintenance.

Our research questions are:

1. If requirements change even late in development, can this

XP process Welcome?

2. Does the quality of project increases when a group utilizes

XP Practices and values?

3. Is Test Driven Development can have a positive effect in

XP Process?

4. Because of Test Driven Development is a there decrease in

defect rate?

2. RELATED WORK

The literature on Extreme Programming is fundamentally

centered around audit of the practices, and how this is unique

in relation to traditional methodologies. In response to

traditional approaches, new lightweight methodologies

showed up. Lucas Layman, Laurie Williams, Lynn

Cunningham gave a review of Extreme Programming [6]. In

their research paper, they depicted Extreme Programming

(XP) is the best known of the lightweight strategies. XP works

best when applied to small, co-located team’s under ten

individuals. Various reports examine the utilization of XP with

small teams. Wood and Kleb [7] formed a two person XP

team and investigated the profitability of their venture as a

component part of a study at NASA. At the point when the

project results were compared with past projects, the XP

approach was around twice as profitable.

XP has four key values: communication, feedback, simplicity,

and courage. A related research paper by the Gerald DeHondt

II, Alan Brandyberry [8] portrayed how these values actualize

the best practices of past Systems Development

Methodologies. The twelve XP practices [9] are: planning,

small releases, metaphor, simple design, refactoring, testing,

pair programming, collective ownership, continuous

integration, 40-hour week, on-site customer, and coding

standards. Robinson and Sharp [10] performed a participant

observer study. The researchers took an interest with an XP

team to look at the relationship between the 12 XP practices

and the four XP values. This research paper inferred that the

XP practices can be utilized to make a community that

supports a culture that incorporates the XP values. XP

concentrate on the individual as the essential drivers of

development success. They are those closest to the solution

and ought to be knowledgeable about how the solution will

actualize. McKeen, Guimaraes, and Wetherbe [11] contend

that client cooperation, enhance the quality of the system in

several ways, for example, giving a more exact and finish

prerequisites, maintaining a strategic distance from the

development of unimportant features, and enhancing client

comprehension of the framework. Kent Beck [12] states that

the programming strategy of XP is to keep the code simple to

alter. Iterative development requires that each developer must

release code at any rate, once per day after passing all the unit

tests or completing a smaller part of planned functionality

[13]. This recognizes issues early and guarantees everyone is

working with the most recent version of the system.

One remarkable distinction in the middle of XP and other

methodologies is its emphasis on rule of testing. Testing is the

premise of all development. In fact, XP programmers are

required to compose tests as they compose production code.

Marick [9] has recommended another model for Test

Development. In addition to the documentation; testers use

different wellsprings of information while designing tests. The

tester is in charge of taking manageable action in response to

changed documents or changed codes. One example of the

benefits of the XP methodology is the Chrysler

Comprehensive Compensation System (C3) (Highsmith, 2000,

February). The venture was begun in 1990s and was being

developed in Smalltalk. In 1996, the undertaking was stuck in

an unfortunate situation because of a low quality code. At that

point, the code was discarded and the undertaking was

restarted utilizing XP as its methodology. Taking after this

rerouting, the principal phase of C3 went live in mid-1997. At

present, the object oriented (OO) payroll system comprises of

2,000 classes and 30,000 approaches. At last, XP is intended

to permit small development teams to deliver rapid, change

rapidly, and change regularly. XP provides the set of practices

that empower small development teams to work successfully

in today’s environment of rapid development. Further work in

this area is ongoing. Extreme Programming is not the answer

for all issues; it additionally has its disadvantages and

downsides. Therefore, Extreme Programming cannot be

applied successfully in each sort of programming venture.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

9

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

3. PROPOSED MODEL

Figure 1: Proposed Model

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

10

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

DESCRIPTION OF PROPOSED HYBRID

MODEL:
Extreme Programming is an iterative and incremental

procedure implies that it gives small incremental releases. The

overall project is partitioned into smaller parts that delivers an

increment in functionality and called “Small Releases”. A

small release is a more recent version of planned framework

that provides some new functionality. All functions

incorporated into the small releases are satisfied completely.

An XP project creates latest releases every one to three

months to gain feedback early. Therefore the system grows

over time with releases. Releases are negotiated in the

Planning Games. The on-site customer characterizes what

ought to be part of the most recent release and the developers

determines amount of time it will take to actualize the release.

Each release cycle comprises of a couple of iterations, each of

which is at most three weeks in length. The iteration is an

organizational utility used to facilitate the planning.

We isolate the process in four stages:

Phase I

Inception Phase:

During the inception phase, you should set up:

 Estimates of 4 variables, i.e.: Cost, Scope, Time, and

Quality.

 A general perspective of the project’s prerequisites (user

stories), key features and preparatory project synopsis

(metaphor).

 An introductory risk evaluation.

Estimates:

The variables which XP identifies for software development

project are:

1. Cost

How much amount of money is to be spent. The assets,

including developers, equipment’s, and so forth accessible for

the project are openly identified by this variable.

2. Time
This variable decides when the most recent small release

ought to be given.

3. Quality

The correctness of the system means how much functionality

performed by system as defined by the customer and how well

tested it will be.

4. Scope

Depicts what and how much will be done (functionality).

User Stories:

User stories are somehow same as use cases. They are used for

assessing time for the release plans. User Stories are

composed by end customers, including features that the

framework must incorporate. They are about sentences of

content composed by the client as indicated by to client

understandings. User stories just give a small viewpoint so

developers can only gauge time to actualize the story. For

further details developers will go to the customer and receive

requirements face to face. Each story will get an evaluation in

this manner, providing development time of the story. This

development time is amount of time is expected to actualize

the story in code. Stories is a focus on user needs.

One of the major requirements of XP is to have an on-site

customer which is a part of the development team. All stages

of an XP project require communication with the end

customers. User stories are composed by the customer, with

developers that helps to make assessments of above depicting

four variables.

Overall Metaphor

Gives an introductory entire framework design by

understanding user stories.

Phase II

Planning Game:

Develop a plan by taking planning as a game (as the name

proposes). The planning game has a goal, playing pieces,

players, and playing rules for reasonable moves.

 Goal: The goal of the game is to put user stories of the

highest priorities into production over the full life of the game.

 Pieces: The essential piece of the game is the user story.

Developers can easily develop plans from lists of user stories

and make gauges.

 Players: The players are on site customers and Developers

of the project.

 Moves: This incorporates following:

 Write Story: For the purpose of playing game, customers

can compose stories at any time that should portray some

functionalities.

 Estimate Story: Development team of venture takes every

story and assigns its priorities. If the estimate becomes

higher, then the story is partitioned into smaller stories and

after that work begins on it. In the event that the

assessment is lower, combines it with another story.

 Make a Commitment: On site customers and Developers

cooperate to choose which stories have highest priority and

constituted the next release and estimates when it will be

prepared to put into production.

The result of the planning phase is:

A development plan for the overall project, demonstrating

iterations and evaluation criteria for each iteration.

Release Plan:

The plan of the entire framework can be released to

developers as well as customers of the framework. Before

developers can begin taking a shot at it the on-site customers

can survey it at least once to figure out if a given plan can

perform desired functionality or not.

Phase III

Iteration:

Any change required in release plan should be possible in

iteration phase. It incorporates 3 steps:

1. Iteration plan:

In the event that an on-site customer needs any adjustment in

the plan, then an “iteration plan meeting” is held to regenerate

the plan of programming tasks. User stories of high priorities

are chosen from the previous release plan. Tasks that are

duplicated can be evacuated. These concluded tasks will be

the detailed plan for the iteration. Then a plan can be given to

Developers to estimate time to finish tasks and afterward,

perform the tasks. So in this way the new iteration plan is

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

11

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

made which is also called initial plan. This Iteration plan goes

for further testing to customers and developers.

2. Testing:

 Acceptance Testing:

Acceptance tests are made from the depictions or stories given

by the client. In this phase acceptance tests are created for

iteration plans testing. The client makes acceptance testing,

when plans are prepared by the given user stories. Iteration

plans must tested by acceptance testing to guarantee whether

to move to the next stage or not. One or more acceptance tests

are made by clients for guaranteeing that the correct

functionalities are incorporated into the iteration plan and how

they function as per plan.

If the plan passed by the acceptance test given by users, then it

actually shows that the functionalities incorporated in the plan

must be actualized in small release. Customers are actual

judges because they judge whether plans are as per their

sought needs or not and reviewing test scores to choose which

plans are passed and which are not and after that developers

prioritizes each functionalities given in the plans.

Until plans do not pass the acceptance tests, these are not

executed by developers. This means that new acceptance tests

must be created for each of the iteration plan.

Acceptance tests ought to be passed so that plans are

implemented and this is one of the biggest challenges for

planners of the project. Quality Assurance of small release

actually relies upon testing phase. It is the team's

responsibility to oversee time variable if the iterative plan

cannot pass acceptance tests and then continuous integration

can be done by both planners and on-site customers.

The acceptance tests are used for checking whether

plan includes the functionalities provided by user stories or

not. The passed acceptance test reflects that a customer’s

requirements have been met and the iterative plan is

acceptable so move on the next phase.

 Unit Testing:

Unit tests are actually testing for coding that is developed by

the programmers, however, in this phase these tests are used

for checking whether plans that are created have proper

workflow or not. The criteria for unit test of iteration plan is

actually set by taking into consideration of SDLC phases.

If unit testing is failed, then revamped the workflow for the

project. Ensure that this new workflow did not introduce any

change in the functionalities, but if unit testing is passed then

you have a proper workflow for project development, thus

saving time variable which is a most challenging factor.

If you want that your iteration plan pass out all of unit tests,

then ensures that a proper workflow is provided for all

functionalities included in the plan.

If unit testing fails, then your latest release plan is

incompatible and you have to rebuild plans.

Unit testing is done after the acceptance test has passed as

acceptance test, demonstrate functions included in plan, unit

tests demonstrate a workflow in which these functionalities

can be actualized by developers of the project.

3. Continuous Integration:

We have about 3 cases.

Case I:

If acceptance test is passed and unit test failed, then planners

rebuild plan with same functionalities but different workflow.

Case II:

 If an acceptance test fails, then again rebuild plan as no unit

test done in this case.

Case III:

 If the iteration plan failed both types of testing, i.e.

acceptance testing and also unit testing, then continuous

integration can be done. Continuous integration at this phase

can be done by both on-site customers and planners as well.

On-site customers present their refined user stories at one

repositories and planners likewise make a workflow for each

user story that how each functionality is planned to be

executed and put at same repositories. Then integration can be

done. Planners ought to be integrating iteration plans,

workflow into the repository every few hours in the meantime,

customers check out the plans and performed the acceptance

testing. Continuous integration regularly maintains a strategic

distance from development of plan in fragments, where

planners and on-site customers are not communicating with

each other about what can be re-used, or what functionalities

could be included in which type of workflow. In continuous

integration step every on-site customer needs to perform

acceptance tests on recent variant and planners likewise

perform unit tests on the most recent version.

 If only a small portion of the iteration plan with the

desired functionality passed testing, then re-plan other

portions thus integrating other tested portions with that portion

of iteration plan. Always work with the latest version of the

iterative plan so you may discard all past day versions every

day.

Phase IV

Construction Phase:

During the construction phase, Iteration plan is implemented

and put into a small release. Construction Phase is actually

manufacturing phase of the undertaking. In construction phase

team needs to create code alongside overseeing resources and

controlling estimated variable costs, scope, time and quality.

Construction phase outcome or result is a small release that

might give to on-site customers of the project. At minimum, it

comprises of:

 The user manuals for users.

 An explanation of the current release.

After getting the outcome team must see whether customers

satisfies without putting the project to higher risks. This initial

release is often called a “beta” release. Then testing phase can

be done. After 100% testing is done, then correct release is

provided. Construction Phase consists of following steps:

1. Meeting:

All project members communicate effectively and imparted

workflow plan with each other in the form of meetings. A

meeting should be possible once in a week or twice a week,

however standup meetings are hung consistently. Every

morning of working day there is a standup meeting held to

share problems occurred in the workflow of the plan and

resolve problems avoiding long discussions. A standup

meeting requires everyone to attend instead of only a few

developers. Standup meeting demonstrates who actually

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

12

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

contributes and who do not. Motivation behind the stand-up

meeting is that the developers replied at least three questions:

 Which tasks were done yesterday?

 What will be today tasks, goals and work

arrangements?

 What issues are bringing on deferrals and dangers?

2. System Metaphor

System metaphor is overall architecture or design of the

release. After a standup meeting held, overall tasks of a

working day are talked about and then a metaphor is outlined.

If new members are included in team of the project, then just a

system metaphor about overall project can disclose to them,

thus you don’t have to explain him or giving him a colossal

measure of reports. So that new people, begin contributing

quickly. Another motivation behind a system metaphor is

utilization of names for classes and objects which helps you in

code reusability. On the off chance that name of some item or

class as of now exists you do not use it again, thus saving the

time. Make the design or metaphor easier to comprehend,

most straightforward approaches may be followed so everyone

understands easily.

3. Testing:

Testing is most important part of this XP Framework. After a

system metaphor is designed it must be tested to guarantee

that the project moves in the direction the client needs it to be.

At this testing level, it is to be test that which objects and

classes are defined and used, which diagrams can be used as a

design and tests the relationships between objects and classes

Testing can be executed as a code or using a proper testing

framework. Here testing is of architectural plan of small

release so no customers are involved in it.

On the off chance that metaphor is satisfactory and taking the

project in the right direction and also actualizing all correct

functionality, then moves to the next step of the construction

phase. In the event that it is not at satisfactory level then

changes can be made or reconstruct the system metaphor.

4. Pair Programming:

Two or more individuals work out together to program a code

for the functionalities and tasks to be implemented and this

can be done on a solitary PC. Pair programming increases the

quality of code and also deliver the code at a time instead of

the individuals working independently.

What is the quality of the code?

The best answer is that you have code that perform project

functionality with less no. of lines of code and much easier

approach is used for this.

Quality code can be achieved by pair programming.

Programming is a skill that requires significant investment of

time to learn so when two individual deal with the code next

to each other in front of a single computer, then both of these

put all their efforts to program quality code.

Pair programming likewise incorporates important part called

“refactoring”.

 Refactoring:

Refactoring is actually removing redundancy, eliminating

unused functionalities and making code as simple as could be

allowed without influencing consequences of the code.

Refactoring can be done throughout the pair programming so

that it saves time and increases quality of the code.

To remove complexity developers use refactoring of code. If

one pair of programmers generates the code, then another pair

may refactor the code, accordingly providing simplest code

which is easy to understand and take lesser time to survey and

test.

One other aspect of pair programming at here is that if any

new idea that developers needs to actualize can likewise be

added to the code as small snippets.

For pair programming to be effective programmers

must have potential to say other partner "how about we

attempt your idea first." Experienced programmers have such

potential to give another programmer chance first. When a

project team uses pair programming at first they feel some

awkward but after then they become used to.

5. Continuous Integration:

At here continuous integration means doing some changing in

the code or integrating coding of paired programmers, thus

executing a single task but this did not influence the result.

Once coding can be done by pair programming all codes

composed by pair programmers can be combined and stored in

the codebase. Continuous integration can be done by the

developer’s team of the project. Continuous integration can be

done in every couple of hours. Always used the most recent

adaptation of code each time. In fact, it is part of the

construction phase, so throughout the construction of code it

may occur.

The benefits of continuous integration are:

 If any new change is made, the code becomes easier.

 If problems occurred during testing, continuous

integration can cover these problems.

In XP, if changes are made they are made into codebase every

couple of hours, but at least once in a day. A developer will

only perform continuous integration when he or she:

 Added some new functionalities.

 Refactors the coding part.

 Fixes some errors or bugs.

After continuous integration can be done the next step is a beta

release. Beta Release is generated where all code put together.

Beta Release:

Small release before final testing is called “beta release”. At

that time beta version was made ready for final testing, which

is considered the biggest challenge of the project.

Acceptance Testing:

In this phase, final testing of beta release can be done. If beta

version passes the acceptance test 100%, then it became a final

small release. Acceptance test is done by the customers and

developers both at this stage. On-site customers test the

desired functionalities and developers test whether the

techniques and methods that are used to implement functions

work properly.

At this stage, even test can be done by adding some errors in

the version and seeing whether these errors triggered or not.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (1), pp. 7-13, FEB 2016

13

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 1
February 2016

After 100%assurance by both developers and customers, small

release is put up.

Small Release:
Smaller version or releases are put up in iterations for the

development of the overall project. Small releases may be

developed every day or every week depends upon how much

complex your system is. Each small release at the end is a

demonstration of the user stories provide.

Next Iteration:

When small release is created, then the next iteration occurs.

In next iteration next part of the planning game can be

performed as another small release. At the end each of these

small releases together make up a project that is according to

user needs.

4. CONCLUSION
The aim of this research paper was to propose a suitable

Extreme Programming framework for resolution of issues like

requirements changing. This proposed framework focuses the

development of quality software by small groups by using

testing at each stage of the development phase. The proposed

framework contains features of SDLC and scrum

methodology. I believe that the implementation of this

framework will help the Pakistani software industry to

improve the productivity of a team and to develop quality

products. However, I acknowledge, much work remains to

further validate and extend this framework.

5. ACKNOWLEDGMENT
I would like to thank all those who dedicated their energies,

resources and time to the success of this research. The

foremost, thank you goes to my ever encouraging teachers.

Last but not the least my thanks goes to my friends and family

for their help, support and efforts.

REFERENCES

[1] Systems Development Lifecycle: Objectives and

Requirements. Bender RPT Inc. 2003.

[2] http://www.ambysoft.com/essays/agileLifecycle.html

[3] Nikiforova, O., Nikulsins, V., Sukovskis, U.: Integration

of MDA Framework into the Model of Traditional

Software Development. In: Frontiers in Artificial Intelligence

and Applications, Databases and Information Systems V, vol.

187, pp. 229–239. IOS Press, Amsterdam (2009)

[4] Szalvay, Victor. An Introduction to Agile Software

Development. Danube Technologies Inc. 2004.

[5] Programming in the eXtreme: Critical Characteristics of

Agile Implementations Gerald DeHondt II_, Alan

Brandyberry_Management & Information Systems

Department, Kent State University gdehondt@kent.edu,

abrandyb@kent.edu

[6] Exploring Extreme Programming Lucas Layman, Laurie

Williams, Lynn Cunningham North Carolina State University,

Department of Computer Science,

{lmlayma2,lawilli3}@ncsu.edu Clarke College,

lynn.cunningham@clarke.edu

[7] W. Wood and W. Kleb, "Exploring XP for Scientific

Research," IEEE Software, vol. 20, pp. 30-36, 2003

[8] Programming in the eXtreme: Critical Characteristics of

Agile Implementations Gerald DeHondt II, Alan

BrandyberryManagement & Information Systems Department,

Kent State University e-Informatica Software Engineering

Journal, Volume 1, Issue 1, 2007

[9] Extreme Programming Sergey Konovalov and Stefan

Misslinger May 23, 2006

[10] H. Robinson and H. Sharp, "XP Culture: Why the twelve

practices both are and are not the most significant thing,"

presented at 1st International Agile Development Conference

(ADC '03), Salt Lake City, UT, 2003

[11] J. McKeen, T. Guimaraes, and J.Wetherbe. The

Relationship between User Participation and User

Satisfaction: An Investigation of Four Contingency Factors.

MIS Quarterly, 18(4):427– 451, 1994.

[12] K. Beck and C. Andres. Extreme Programming

Explained: Embrace Change 2nd Ed. Addison- Wesley,

Boston, 2004.

[13] S. Joosten and S. Purao. A Rigorous Approach for

Mapping Workflows to Object-Oriented IS Models. Journal of

Database Management, 13(4):1–19, October–December 2002.

[14] B. Boehm and R. Turner, “Using Risk to Balance Agile

and Plan-Driven Methods,” IEEE Computer, vol. 36, no. 6, pp.

57-66, June 2003.

AUTHOR PROFILES

Aroosa Hameed received her BS degree in Information

Technology from University of Gujrat, in 2016. She is a

research student of University Of Gujrat. She has done his

research by introducing best practices in different software

development process models.

http://www.ambysoft.com/essays/agileLifecycle.html
mailto:abrandyb@kent.edu
mailto:lynn.cunningham@clarke.edu

