

©2012-18 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

18

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

Maximum Clique Finder: MCF

1Atul Srivastava, 2Anuradha Pillai, 3Dimple Juneja Gupta
1 Department of Computer Engineering, Pranveer Singh Institute of Technology, Kanpur, India

2Department of Computer Engineering, YMCA University of Science & Technology, Faridabad, India

3Department of Computer Applications, NIT, Kurukshetra, India

E-mail: 1atul.nd2@gmail.com, 2anuangra@yahoo.com, 3 dimplejunejagupta@gmail.com

ABSTRACT

In maximum clique problem, it is desired to find maximum number of vertices, any two of which are adjacent. The maximum clique

problem falls into category of NP-hard problems. It is, therefore, often avoided to detect maximum clique by practitioners in many

applications despite the fact that it has significant applications in the field of information retrieval, data mining, network analysis

etc. Community Detection in social networks is one of the recent trends in computer science. Maximum Clique and community in

social networks have overlapping definitions in respective domains. Thus problem of community detection in social networks

reduces to finding cliques in graphs, provided social networks are represented as graphs. Several exact algorithms to find maximum

clique already exist in literature that promise acceptable runtimes on certain graphs. But problem arises when these algorithms are

applied on real world graphs which are massive in size. In this work, a novel branch and bound exact algorithm to find maximum

clique, Maximum Clique Finder (MCF) has been presented with new pruning steps. This algorithm has been tested on real world

graphs and DIMACS benchmark graphs, where it exhibits runtimes several times better than other existing algorithms and it

performs notably well on large sparse real world graphs.

Keywords: Community Detection in Social Networks, Information Retrieval, Data Mining, Graphs, NP-Hard problems.

1. INTRODUCTION

An undirected graph is denoted by G = (V, E), where V is

set of vertices and E is set of edges. A clique in the graph is set

of vertices in which any two vertices are adjacent to each other.

Two vertices are adjacent to each other if there is an edge

between them. Therefore clique is a complete sub-graph of a

given undirected graph. Finding the clique that has maximum

number of vertices in a graph is called maximum clique problem

[1].

There is a wide range of prominent applications of

maximum clique problem such as community detection in

networks [2, 3, 4], data mining in biometrics [5], information

retrieval [6], data mining [7], symptoms correlation based

disease classification [8], computer vision [9], coding theory

[10], and pattern recognition [11]. Many more applications are

listed in [12, 13].

Finding maximum clique is an NP-Hard problem [14]. An

independent set is set of vertices in which no two vertices are

adjacent. Finding the largest such set in a graph is called

maximum independent set problem. A problem similar to this is

vertex cover problem. A vertex cover is set of vertices which

covers all the edges in the graph. To find smallest such set in the

graph is called maximum vertex cover problem. The maximum

clique problem is computationally equivalent to these two

problems. Since all of these problems are NP-Hard problems,

no polynomial time exact algorithm is expected to be found.

Nevertheless, maximum clique problem finds several

significant applications in prominent fields of computer science,

it is of great interest to try to develop fast and exact algorithms.

Almost every exact algorithm employs branch and bound

approach which continuously optimizes the search of solution

by discarding (pruning) the branches which will not lead to

solutions any better than previously acquired solutions.

Carraghan and Pardalos [15] presented a simple and

effective branch and bound algorithm for maximum clique

problem. Ostergard [16] proposed an improvement to this

algorithm at computation level. Tomita and Seki [17] used

vertex coloring to compute upper bounds. Kone and Jenezic

[27] provided improvement on this approach later. Other

examples of branch and bound algorithms are Bomze et al.,

Segendo et al., and Babe and Tinhofer [6, 18, 19, 20]. Batageli

and Pajek [21] compared different exact maximum clique

algorithms.

This paper presents an algorithm to find maximum clique in

an undirected graph with novel pruning steps. Some very

promising exact algorithms and the development in finding

maximum clique are briefly discussed in section 2. In section 3

our algorithm Maximum Clique Finder (MCF) is described in

detail. Section 4 discusses implementation and result analysis.

Section 4 concludes this article.

2. RELATED WORK

A simple approach to find maximum clique in an

undirected simple graph G is to find all the cliques present in the

graph and then select the largest one. But enumerating all the

cliques requires infeasible time. Hence a simple algorithm is

presented in [15], which reduces enumerations significantly. By

pruning the fruitless branches, the search space is tremendously

mailto:atul.nd2@gmail.com
mailto:anuangra@yahoo.com
mailto:dimplejunejagupta@gmail.com

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

reduced. The algorithm finds largest clique containing vertex

at each step i by performing depth first search from vertex . At

each depth i, if the member of remaining vertices, which can

possibly constitute a clique containing vertex , is smaller than

the size of largest clique found so far, the algorithm backtracks

by pruning this branch of enumeration. Algorithm proposed in

[16] incorporates an additional pruning in algorithm presented

in [15] with the help of some auxiliary bookkeeping. Algorithm

proposed in [16] is faster than algorithm proposed in [15] on

random and DIMAX benchmark graphs [22]. However the

order in which vertices are processed majorly affects the

pruning strategy used in this algorithm.

Many algorithms to find maximum clique use vertex

coloring to define upper bound on the maximum clique. MCQ

algorithm [17] is one of the latest and popular methods which

uses this idea. MaxCliqueDyn [23] is the improved version of

MCQ with the variants MCQD and MCQD&CS. It uses

computationally more expensive tighter upper bounds, which

are applied on a part of search space. BBMC [24] is another

enhanced version of MCQ which uses efficient methods to

compute graph transitions and bounds. It uses bit strings to sort

vertices in constant time.

3. MAXIMUM CLIQUE FINDER

ALGORITHM (MCF)

In this section a new algorithm, MCF, is presented which

overcomes the limitations of other algorithms mentioned earlier

by the use of additional pruning strategies. Following notations

are used in the algorithm. The graph G(V,E) contains n vertices

as }. is set of vertices adjacent to vertex

. And the cardinality of i.e. degree of is denoted

by . Degree of each vertex is computed once in the

beginning of the algorithm.

Maximum clique in a graph can be found by enumerating

the largest clique containing each vertex and then selecting the

largest among these. Most significant point of our algorithm is

that the search space is reduced by pruning the vertices which

cannot form cliques larger than the current maximum clique in

an incremental fashion. Algorithm 1 and algorithm 2 shown in

figure 1 and figure 2 respectively outline this method. The

variable max stores size of the largest clique found so far.

Initially it is set as 0 or any other positive lower bound, if cliques

smaller than the lower bound, are insignificant.

Maximum clique containing a vertex cannot be larger

than the degree of , hence only the adjacent vertices of are

considered to obtain the largest clique containing . The main

procedure MCF therefore generates a set U⊆ for each

vertex , which contains those neighbors of which could

survive the prunings. Subroutine Find_Clique is then invoked

on U. Subroutine Find_Clique presented in Algorithm 2

enumerates every possible clique containing vertex in a

recursive fashion and returns the largest clique containing .

The size of clique found at any point of execution of

Find_Clique is stored in ‘size’. Initial value of size is set 1 as we

start with a clique having just one vertex.

Algorithm 1: MCF(G=(V,E))

/*max, size, C and M are global variables.*/

begin

Sort all the vertices in V non-increasing order of

degree./*pruning 1*/

 max 0;

 for /*to iterate n times*/

 size 1;

 C ɸ;

 Select_First(V); /* is highest degree node in

V.*/

 V V\{ }; /*Pruning 2*/

 current_deg deg();

 /*C is current clique containing */

 Find_Clique(U,1,C);

 if then

 max size;

 M C; /*M is max-clique found so far*/

 end if

 if max = current_deg then /*Pruning 3*/

 return M;

 end if

 end for

 return M;

end

Fig. 1 Algorithm for finding maximum clique

Algorithm 2: Find_Clique(U, size, C);

begin

 while U ≠ ɸ do

 if size + |U| ≤ max then /*Pruning 4*/

 return;

 end if

 select highest degree node u from U;

 U U\{u};

 ;

 Find_Clique(,size+1,C);

 end while

end

Fig. 2 Subroutine for algorithm 1

There are four pruning steps in our algorithm. Probability

of a vertex to be part of maximum clique is directly proportional

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

to its degree. Therefore higher degree nodes have higher

chances to be in max-clique. Pruning 1 emphasizes this idea as

the vertices are already sorted in non-increasing order of their

degrees. Lower degree nodes are pruned in very obvious

manner. Pruning 2 avoids re-computation of already found

cliques by including only those vertices in neighbors list of

vertex whose cliques are not yet found. Pruning 3 works on

the same analogy used in pruning 1. If the largest clique found

so far is of size k, then any vertex of degree smaller than or equal

to k cannot form a clique of size greater than k. Therefore at this

point all the vertices having degree less than or equal to k are

ignored for further search of the largest clique. Pruning 4 says if

all the vertices of U were added to get the clique, its size cannot

be more than the size of largest clique found so far (max).

Pruning 4 is most frequent pruning, pruning 1 and 2 are

moderate and pruning 3 is used just once.

Fig. 3. Example Graph

Demonstration of MCF is presented as follows for graph

shown in figure 3.
V = {4, 2, 3, 0, 1, 5} /*Sorted in

non-decreasing order of their degrees*/

max = 0

size = 1

C = {4} /*highest degree vertex 4 is

selected*/

Find_Clique({2, 3, 0, 1, 5}, 1, {4})

 C = {4, 2} /*vertex 2 is selected*/

 size = 2

 U = {3, 0, 1, 5}∩{1, 3, 4, 5}

 Find_Clique({3, 1, 5}, 2, {4, 2})

 C = {4, 2, 3} /*vertex 3 is selected*/

 size = 3

 U = {1, 5}∩{2, 0, 5, 4}

 Find_Clique({{5}, 3, {4, 2, 3})

 C = {4, 2, 3, 5} /*vertex 5 is

selected*/

 size=4

 U = ∅∩{2, 3, 4}

 Find_Clique(∅, 4, {4, 2, 3, 5})

 return./*Main Function MCF*/

max = 4

M = {4, 2, 3, 5}

max = deg(2) /*Pruning 3 prunes rest of the

vertices*/

return {4, 2, 3, 5} /*Max Clique*/

It is clearly evident from the above demonstration that, the

maximum clique found by MCF is correct. MCF finds

maximum clique in single iteration of the main algorithm, due to

pruning 3 which is extremely effective and gives MCF upper

hand as compared to other exact algorithms. We shall prove this

fact with the help of experimental results in next section.

4. EXPERIMENTS AND RESULT ANALYSIS

In this section we present comparison of performance of

our algorithm with other exact algorithms. Our experiments

were performed on 64 bit windows 7 Home Basic with 2.3 GHz

Intel Core i3 with 32 GB of main memory. Implementation is

done in C compiled using NeuTroN DoS-C++ version 0.77.0.0.

Our implementation uses a simple adjacency list representation

for graph. This is done by maintaining a reference array of size

|V|, which contains references for |V| lists of vertices, each

corresponding to a particular vertex. Figure 4 shows our

representation.

Fig. 4. The Adjacency List data structure.

We have considered graphs from two categories. First

category includes graphs originated from real world

applications. Table 1 gives brief description of those graphs.

Second category includes graphs from DIMACS

Implementation Challenge [22]. Table 2 represents structural

properties of the graphs.

TABLE 1 DESCRIPTION OF REAL WORLD GRAPHS USED IN EXPERIMENT.

Graph Description

Email_enron [25]

Communication network of E-mail

Exchange

dictionary28 [20] Network of words

code-mat-2003 [26] Collaboration network of scientists

foldoc [27] Dictionary for computing related terms

web-Google [28]

Web graph released as part of Google

programming contest in 2002

soc-wiki-vote [29] Wikipedia page vote network

daysall [30]

Network of Reuter terror news obtained

from CRA networks

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

TABLE 2 STRUCTURAL CHARACTERISTICS OF GRAPHS

Graph |V| |E| Edge Density Max Degree

Email_enron 36692 183831 0.00027 1482

dictionary28 52652 89038 0.00006 38

code-mat-2003 31163 120029 0.00025 202

foldoc 13356 91470 0.00103 728

web-Google 916428 4322051 0.00001 6332

soc-wiki-vote 8297 100762 0.00293 1065

daysall 13308 148035 0.00167 2265

hamingo6-4 64 704 0.34921 22

c2000.5 2000 999836 0.50010 1074

c4000.5 4000 4000268 0.50000 2123

Johnson8-94 70 1855 0.76812 53

keller4 171 9435 0.64912 124

le450_25 450 17343 0.17100 179

le450_25d 450 17425 0.17200 157

c-fat200-5 200 8473 0.42578 86

brock200-2 200 9876 0.49628 114

r250-5 250 14849 0.47700 191

r1000-1 1000 485090 0.97100 991

TABLE 3 COMPARISON OF RUNTIMES OF VARIOUS ALGORITHMS. ∆ IS SIZE OF

MAX-CLIQUE FOUND. , , IS TIME TAKEN BY

CARRAGHAN PARDALOS, OSTERGARD ALGORITHM AND MCQD

RESPECTIVELY. IS TIME TAKEN BY OUR ALGORITHM.

G ∆

Email_enron 20 6.940 16.210 4.010 1.001

dictionary28 26 7.154 28.254 8.102 0.100

code-mat-2003 25 8.010 12.003 1.960 0.021

foldoc 9 * 3.210 0.620 0.070

web-Google 44 * 11005.070 * 1.203

soc-wiki-vote 17 0.720 0.940 0.310 2.014

daysall 28 8.440 10.010 1.002 0.210

hamingo6-4 4 <0.01 <0.01 <0.01 <0.01

c2000.5 184 40.810 25.354 8.207 32.112

c4000.5 247 378.24 101.245 24.200 87.024

Johnson8-94 14 0.201 <0.01 0.011 0.310

keller4 11 25.610 0.220 0.031 0.010

le450_25 25 0.120 0.100 0.100 <0.01

le450_25d 25 0.120 0.100 0.100 <0.01

c-fat200-5 58 0.710 0.345 0.010 0.556

brock200-2 12 1.022 0.032 0.010 0.540

r250-5 35 0.010 0.010 0.010 0.010

r1000-1 291 2.214 0.997 0.445 0.210

Three significant exact algorithms are considered for result

analysis i.e. Carraghan Pardalos [15], Ostergard Algorithm [16]

and MCQD [23]. For Carraghan Pardalos we have used our own

implementation. For Ostergard Algorithm, we have used cliquer

source code [31] that is publically available. For MCQD also

we have used publically available source code available at

http://insilab.org/maxclique/. Table 3 represents performance

comparison of various algorithms. We have set an upper limit of

1800 seconds on runtime. The program is forcefully aborted if it

fails to terminate in 1800 seconds. It is shown by an Asterisk (*)

in the table. Figure 3 represents comparison of normalized

runtimes of various algorithms. Figure 4 represents comparison

of runtimes of various algorithms against edge density in the

graphs.

Fig. 3. Runtime (normalized to slowest algorithm) comparison of various

algorithms.

Fig. 4. Runtimes of various algorithms vs edge density.

From figure 4 we can conclude that MCF performs

excellent if the graph is sparse. Maximum clique problem has

major applications in community detection in social graphs.

Almost every social graph follows power law of degree

distribution [1], which implies that there are small number of

higher degree vertices and large number of lower degree

vertices. Pruning 3 in our algorithm utilizes this characteristic

and most of the lower degree vertices are pruned in initial

iterations of our algorithm. For DIMACS graphs also our

algorithm gives very good results.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

5. CONCLUSION

A novel exact algorithm, MCF, to find maximum clique has

been presented in this paper. The algorithm has been tested on

real world graphs and DIMACS benchmark graphs. The results

are compared against performance of other significant exact

algorithms such as algorithm proposed by Carraghan and

Pardalos [15], Ostergard algorithm [16], MCQ [17] and MCQD

[24]. The results show that proposed algorithm performed

tremendously well with real world graphs. For DIMACS

benchmark dense graphs, our algorithm brings slight

improvement over Carraghan and Pardalos algorithm whereas

cliquer [16] performs better. For sparse real world graphs our

algorithm performed significantly better than any other

algorithm. Maximum clique problem falls into category of

NP-Hard problems. Due to this reason, maximum clique

detection is avoided in several applications. But the results

shown in this research establish the fact that maximum cliques

can be found in feasible time in significantly large and sparse

real world graphs.

REFERENCES

[1] Atul Srivastava, Anuradha and Dimple Juneja Gupta,

“Social Network Analysis: Hardly Easy”, IEEE

International Conference on Reliability, Optimization and

Information Technology, pg. 128-135, 6, February 2014.

[2] S. Fortunato. “Community Detection in Graphs.” Physics

Reports 486:3 (2010), 75–174.

[3] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. “Uncovering

the Overlapping Community Structure of Complex

Networks in Nature and Society.” Nature 435 (2005), pp.

814–818.

[4] S. Sadi, S. Oguducu, and A. S. Uyar. “An Efficient

Community Detection Method Using Paralle Clique

Finding Ants.” In Proceedings of the IEEE Congress on

Evolutionary Computation, pp.1–7. IEEE, 2010.

[5] T. Matsunaga, C. Yonemori, E. Tomita, and M.

Muramatsu. “Clique-Based Data Mining for Related

Genes in a Biomedical Database.” BMC Bioinformatics

10 (2010), 205.

[6] J. G. Augustson and J. Minker. “An Analysis of Some

Graph Theoretical Cluster Techniques.” Journal of the

ACM 17:4 (1970), 571–588.

[7] L. Wang, L. Zhou, J. Lu, and J. Yip. “An

Order-Clique-Based Approach for Mining Maximal

Colocations.” Information Sciences 179:19 (2009),

3370–3382.

[8] R. E. Bonner. “On Some Clustering Techniques.” IBM

Journal of Research and Development 8:1(1964), 22–32.

 [9] R. Horaud and T. Skordas. “Stereo Correspondence

Through Feature Grouping and Maximal Cliques.” IEEE

Transactions on Pattern Analysis and Machine

Intelligence 11:11(1989), 1168–1180.

 [10] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D.

Smith. “A New Table of Constant Weight Codes.” IEEE

Transactions on Information Theory 36:6 (1990),

1334–1380.

 [11] M. Pavan and M. Pelillo. “A New Graph-Theoretic

Approach to Clustering and Segmentation.” In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR’03), pp. 145–152.

Washington, DC, USA: IEEE Computer Society, 2003.

 [12] G. Gutin, J. Gross, J. Yellen. “Discrete Mathematics & Its

Applications.” Handbook of Graph Theory. CRC Press,

2004.

[13] P. M. Pardalos and J. Xue. “The Maximum Clique

Problem.” Journal of Global Optimization 4 (1994),

301–328.

[14] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of NP Completeness.

New York, NY, USA: W. H. Freeman & Co., 1979.

[15] R. Carraghan and P. Pardalos. “An Exact Algorithm for

the Maximum Clique Problem.” Operations Research

Letters 9:6 (1990), 375–382.

[16] P. R. J. Ostergard. “A Fast Algorithm for the Maximum

Clique Problem.” Discrete Applied Mathematics 120:1-3

(2002), 197–207.

[17] E. Tomita and T. Seki. “An Efficient Branch-and-Bound

Algorithm for Finding a Maximum Clique.” In

Proceedings of the 4th International Conference on

Discrete Mathematics and Theoretical Computer Science,

pp. 278–289. Berlin, Heidelberg: Springer-Verlag, 2003.

[18] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo.

“The Maximum Clique Problem.” In Hand.

[19] V. Boginski, S. Butenko, and P. M. Pardalos. “Statistical

Analysis of Financial Networks.” Computational Statistics

& Data Analysis 48:2 (2005), 431–443.

[20] V. Batagelj and A. Mrvar, Pajek Datasets. Available

online (http://vlado.fmf.uni-lj.si/pub/networks/data/),

2006.

[21] P. Prosser. “Exact Algorithms for Maximum Clique: A

Computational Study.” Algorithms 5:4 (2012), 545–587.

[22] D. Johnson and M. A. Trick, Editors, Cliques, Coloring

and Satisfiability: Second DIMACS Implementation

Challenge. In DIMACS Series on Discrete Mathematics

and Theoretical Computer Science 26, 1996.

[23] J. Konc and D. Janezic. “An Improved Branch and Bound

Algorithm for the Maximum Clique Problem.” MATCH

Communications in Mathematical Computer Chemistry 58

(2007), 569–590.

[24] P. San Segundo, D. Rodr´ıguez-Losada, and A. Jim´enez.

“An Exact Bit-Parallel Algorithm for the Maximum

Clique Problem.” Computers & Operations Research 38:2

(2011), 571–581.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos . “Graphs Over

Time: Densification Laws, Shrinking Diameters and

Possible Explanations.” In Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge

Discovery in Data Mining (KDD’05), pp. 177–187. New

York, NY, USA: ACM, 2005.

[26] M. E. J. Newman. “Co-authorship Networks and Patterns

of Scientific Collaboration.” In Proceedings of the

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 7 (2) pp. 18-25, APR 2018 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 7, Issue 2
April 2018

National Academy of Sciences of the United States of

America 101(2004), 5200–5205.

[27] D. Howe. “Foldoc: Free On-Line Dictionary of

Computing.” Available online (http://foldoc.org/).

[28] Google programming contest. Available online

(http://www.google.com/programming-contest/).

[29] J. Leskovec, D. Huttenlocher, and J. Kleinberg.

“Predicting Positive and Negative Links in Online Social

Networks.” In Proceedings of the 19th International

Conference on World Wide Web (WWW’10), pp.

641–650. New York, NY, USA: ACM, 2010.

[30] S. R. Corman, T. Kuhn, R. D. Mcphee, and K. J. Dooley.

“Studying Complex Discursive Systems: Centering

Resonance Analysis of Communication.” Human

Communication Research 28:2 (2002), 157–206.

[31] S. Niskanen and P. R. J. Ostergard. “Cliquer user’s guide,

version 1.0.” Technical Report T48, Communications

Laboratory, Helsinki University of Technology, Espoo,

Finland, 2003.

AUTHOR BIOGRAPHIES

Atul Srivastava received the B. Tech. degree in

Information Technology from the UP Technical

University, Lucknow, India, in 2008, and M.Tech.

degree in Information Technology from YMCA

University of Science and Technology, Faridabad,

India in 2012. He is a research student of YMCA

University of Science and Technology, Faridabad,

India. He is currently Assistant Professor at Pranveer

Singh Institute of Technology, Kanpur, India.

Dr. Anuradha Pillai has received her M. Tech and

PhD in Computer Engineering from MD University

Rohtak, in the years 2004 and 2011 respectively. She

has published 30 research papers in various

International journals and conferences. She has more

than 13 years of teaching experience. Presently she is

serving as Assistant Professor at YMCA University of

Science & Technology, A State Govt. University,

Faridabad Haryana. Her research interests include

Web Mining, Data Structures and Algorithms,

Databases. Research Papers listed in database.

Dr. Dimple Juneja Gupta is working as Faculty at

Department of Computer Applications at NIT

Kurukshetra, India.

