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ABSTRACT 

 
Principle Components Analysis (PCA) is powerful methods used for dimension reduction in various field of engineering.  PCA selects principle 

axis in such a way the sum of the Euclidean distance from the axis is minimized. PCA works well for linearly distributed data, however it fails 

in case of non-linear distribution of data. Non-Linear Principle Components Analysis (NLPCA) has a capability to deal with non-linear data. 

The non-linear mapping can be done using Artificial Neural Network. This paper, discusses the PCA and NLPCA in details. We also discuss the 

Artificial Neural Network (ANN) implementation of NLPCA. The structure of circular PCA is also detailed. Finally, results are shown for both 

PCA and Circular PCA for linear and circular data and performance is evaluated in terms of MSE.  
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1. INTRODUCTION 
From mathematics to engineering principal component analysis 

(PCA) has been used for dimension reduction. This method is 

very powerful and reduces computational complexity. PCA is 

simplified form of Fisher’s method. Nonlinear principal 

component analysis (PCA) [1, 2, 3] is a nonlinear generalization 

of standard PCA. With the fact that PCA is limited to linear 

components, nonlinear PCA sums up the principal components 

from straight lines to curves and subsequently explains the 

inborn data structure by curved subspaces. Identifying and 

making the description of nonlinear structures is particularly 

vital for making the analysis of the time series. Hence, 

Nonlinear PCA is now and then being used to examine the flow 

of various natural procedures [4, 5]. Be that as it may, the 

validation of the model complexity of nonlinear PCA is not an 

easy assignment [6]. Over-fitting could be the result of the 

regularly predetermined number of accessible samples; besides, 

in the case of nonlinear PCA over-fitting can likewise happen 

due to the intrinsic data geometry, which can’t be overcome by 

enhancing the sample number. 

The goal is to locate a model with medium complexity. The 

word nonlinear PCA (NLPCA) is frequently referred to the 

auto-associative neural network method. In the case of [7] 

linear subspaces of PCA are supplanted by manifolds and in [8] 

a neural network methodology is utilized for the purpose of 

nonlinear mapping. This particular work is concentrated on the 

auto-associative neural network system to deal with nonlinear 

PCA and its model validation issue. 

 

2. PRINCIPAL COMPONENT ANALYSIS 
With the assumption of linearity PCA can be defined as to re 

expressing the original data as a linear combination of its basis 

vectors. Let X and Y be m×n matrices related by a linear 

transformation P. X is the original recorded data set and Y is a 

re-representation of that data set. 

PX = Y       (1) 

• pi are the rows of P 

• xi are the columns of X 

• yi are the columns of Y. 

Equation 1 represents a change of basis and thus can have many 

interpretations. 

1. P is a matrix that transforms X into Y. 

2. Geometrically, P is a rotation and a stretch which again 

transforms X into Y. 

3. The rows of P, {p1, . . . , pm}, are a set of new basis vectors 

which expresses the columns of X. 

The goal is summarized as follows. .Find some orthonormal 

matrix P where 

Y PX  such that 
1

1
T

YS YY
n




is diagonalized. 

The rows of P are the principal components of X. 

1 1
( )( )

1 1
T T

YS YY PX PX
n n

 
 

  (2) 

1 1

1 1
T Y Y

YS PXX P PAP
n n

 
 

  (3) 

Note that we defined a new matrix 
TA XX , where A is 

symmetric. Our aim is to recognize a symmetric matrix (A) is 

diagonalized by an orthogonal matrix of its eigenvectors. For a 

symmetric matrix using diagonalization theorem we have: 
TA EDE      (4) 

where D is a diagonal matrix and E is a matrix of eigenvectors 

of A arranged as columns. We consider a matrix P to be a matrix 

whose each row is an eigenvector of
TXX .  
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By considering,
TP E . Equation 4 modifies as

TA P DP
.thus equation 3 simplifies to. 

1 1

1 1
T T T

YS PXX P PAP
n n

 
 

  (5) 

1 1
( ) ( ) ( )

1 1
T T T T

YS P P DP P PP D PP
n n

 
 

 (6) 

1 1
( ) ( )
1 1

YS I D I D
n n

 
 

   (7) 

In general computing of PCA of a data set X considers the 

subtraction of mean of each measurement type and finally 

computing the eigenvectors of 
TXX  . 

 

2.1 Limitations of PCA 

The main limitations of the PCA are as follows: 

The directions with largest variance are assumed to be of most 

interest. 

We only consider orthogonal transformations (rotations) of the 

original variables. (Kernel PCA is an extension of PCA that 

allows non-linear mappings). 

PCA is based only on the mean vector and the covariance 

matrix of the data. Some distributions (e.g. multivariate normal) 

are completely characterized by this, but others are not. 

Dimension reduction can only be achieved if the original 

variables were correlated. If the original variables were 

uncorrelated, PCA does nothing, except for ordering them 

according to their variance. 

 

PCA is not scale invariant. 

1. Frontal-view of the image is necessary. 

2. PCA produces incorrect results when it is over-fitted. 

3. Training of images is computationally hard. 

4. Threshold is decided heuristically. 

 
Figure 1: Raw 2D data distribution 

  In figure 1, raw data distribution is shown, where x1 is linearly 

distributed data added with normally distributed noise 

components, while x2 is normally distributed random data. Two 

eigenvectors directions are shown. 

 

 
Figure 2: Rotated 2D data distribution 

 

In figure 2, rotated raw data distribution is shown, which is 

rotated in 2nd eigenvectors direction.  

 

 
Figure 3: Projection on the primary eigenvector 

In figure 3, original data, projected data using PCA is shown, 

and for randomly generated noise projection error is also 

shown. PCA selects principal axis such that the maximum 

variance can be covered, however it completely track the 

original data, thus with linear data PCA works perfectly fine. 

 
Figure 4: Circular 2D Data distribution 
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Figure 5: Rotated Circular 2D Data distribution 

 

 
Figure 6: Projection on the primary eigenvector 

 
In figure 4, raw circular data is plotted with normally distributed 

noise, and two principal axes is also shown. In figure 5, rotated 

circular data is shown. In finally figure 6, principal components 

along with projection error is shown. It is clear from the figure 

that PCA fails to follow circular data. However the variance is 

very high 35.1826. 
 

3. THE NONLINEAR PCA MODEL 
We can represent these data as m points in an n-dimensional 

space. In conventional PCA, the first principal component 

corresponds to the direction of a line running along the principal 

axis of the resulting cloud of points. There are two equivalent 

perspectives on the role that the principal axis serves. The first 

is that the projection of the m points on to this line has the 

maximum dispersion or variance. In other words, the 

component scores of the first principal component has the most 

variance. The other perspective is that the average distance of 

any point from this line is minimized in relation to all possible 

lines (Figure 7). Nonlinear PCA adopts exactly the same 

principles but allows for curvilinear lines. In brief, a curve is 

fitted to the data in n-space such that the average distance of the 

data points from this principal curve is minimized (Figure 8). 

This heuristic description highlights the intimate relationship 

between nonlinear PCA and the identification of principal 

curves or surfaces [9-11] In the case of linear PCA, the principal 

axes are determined analytically using the eigenvector solution 

of the n×n covariance matrix. In nonlinear PCA there is no 

closed-form solution and iterative techniques are generally 

employed. These iterative approaches are usually best framed 

in terms of simple neural networks using gradient ascent or 

descent on the weights of the connections within the network. 

 
Figure 7: Idea of Linear PCA 

 

 
Figure 8: Idea of Non-Linear PCA 

It is possible to perform the Nonlinear PCA (NLPCA) with the 

help of a multi-layer perceptron (MLP) of an auto-associative 

topology which is also termed as bottleneck, auto-encoder, 

replicator or sand-glass type network, refer Figure 9. 

An identity mapping is performed by the auto-associative 

network. The result x̂ is made to approximate the input x  by 

reducing the squared reconstruction fault 
2

ˆE x x  . 

We can consider that the network have two parts: the extraction 

function :ext X Z  is represented by the first part while on 

the other hand the inverse function the generation or 

reconstruction function ˆ:gen Z X   by the second part. A 

concealed layer in both parts makes it possible for the network 

to carry out functions of nonlinear mapping. With the use of 

extra units in the component layer in the middle, we can extend 

the network to extract component more than one. With the help 

of a hierarchical nonlinear PCA [12], we can achieve ordered 

components. 

For the method which is proposed for validation, nonlinear 

PCA should be adapted for the estimation of the missing data. 

This could be performed with the help of an inverse nonlinear 

PCA model [13]. This PCA model optimises the generation 

function by the means of only the second part of the auto 
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associative neural network. Due to the fact that the extraction 

mapping X Z is not available, estimation of both the 

weights w and also the inputs z have to be made which represent 

nonlinear components’ values. The optimisation of both w and 

z could be done simultaneously in order to reduce the 

reconstruction error, as illustrated in [13]. 

We can control the complexity of a model by a weight-decay 

penalty term [13] included to the error function

2
total i

i

E E v w
 

   
 
 , we are the network weights. We can 

vary the impact of the weight-decay term by changing the 

coefficient v and therefore the model complexity is modified 

which represents the flexibility of the component curves in 

nonlinear PCA. 

 
Figure 9: Projection on the primary eigenvector 

 

 

4. CIRCULAR PCA (CPCA) 
Kirby and Miranda [5] introduced a circular unit at the 

component layer in order to describe a potential circular data 

structure by a closed curve. As illustrated in Figure 10, a 

circular unit is a pair of networks units p and q whose output 

values 
pz  and rz are constrained to lie on a unit circle 

 
Figure 10: Projection on the primary eigenvector 

2 2 1 p qz z      (8) 

Hence, the values of both units can be represented by a single 

angular variable   

 cos pz and  sin qz  

Here, the forward propagation through the network is described 

as: Initially, approximately equal to standard units, both units 

are weighted sums of their inputs mz  provided by the values of 

all units m  in the former layer. 

p pm m

m

a w z  and q qm m

m

a w z      (9) 

The weights 
pmw and 

qmw are of matrix 
2W . Biases are not 

explicitly considered, although, they can be added by putting an 

additional input with activation set to one. 

The sums 
pa  and 

qa are at this point corrected by the radical 

value 
2 2 p qr a a . 

In order to get circularly constraint unit results 
pz  and 

qz
 

 
p q

p q

a a
z z

r r
    (10) 

                                   

For backward propagation, we require the derivative of the 

error function 

21
ˆ

2
   

N d
n n

i i

n i

E x x    (11) 

Considering all network weights .w the dimensionality d of 

the data is provided by the number of observed variables. N
represents the samples number. In order to simplify matters, 

initially we have to consider the error e of a simple 

 
2

1

1
ˆ,

2

d

ii
x e x x  with  1,.,.,.,.

dx x x . We can 

extend the resulting derivative with respect to the whole error 

E provided by the sum over all n samples, .n

n

E e  

We are aware with the fact that the derivative of weights of 

matrices W1,W2 ,W3 and W4 are obtained by standard back- 

propagation, the derivatives of the weights wpm and wqm of 

matrix W2, which establish connection of units m of the second 

layer with the units p and q of the component layer, are acquired 

as follows: Initially, we require the partial derivatives of e with 

respect to 
pz  and 

qz : 

 


 


e
p jp j

jp

w
z

    and  


 


e
q jp j

jq

w
z

(12) 

Here 
j represents the partial derivatives 

e

ja




of units j in 

the 4th layer. The partial derivatives of e that are required in 

respect of 
pa  and 

qa of the circular unit pair are 

  3
  


  


qe
p p q q p

p

z
z z

a r
 and 

  3
  


  


pe
q q p p q

q

z
z z

a r
. 

The final back-propagation formulas for all n samples are 
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





 n n

p m

npm

E
z

w
 and 





 n n

p m

nqm

E
z

w
           (13) 

RESULTS 

In this part results for circular data is presented using ANN 

based NLPCA or more precisely Circular PCA. 

1 sinx t    

2 cosx t        (14) 

The data x lie on a one-dimensional manifold (a circular loop) 

embedded in two dimensions, plus Gaussian noise η of standard 

deviation σ varied from 0.001 to 1. 1,000 samples x were 

generated from a uniformly distributed factor t over the range 

[-π, π], t represents the angle. The weight decay is of 0.001. 

Network architecture is 3-4-2-4-3 specifies a network of five 

layers having three units in the input and output layer, four units 

in both hidden layers, and two units in the component layer, as 

illustrated in Figure 8. In figure 11(a), raw data is generated 

which is corrupted by additive Gaussian noise of standard 

deviation of 1. In figure 11(b) data approximated by CPCA is 

shown, due to large noise it cannot map all the points in a circle. 

The obtained Mean Square Error (MSE) is 0.9873. 

 

 
(a) Raw Data 

 
(b) Circular Map 

Figure 11: CPCA with Gaussian Noise with variance 1 
 

 
(a) Raw Data 

 
(b) Circular Map 

Figure 12: CPCA with Gaussian Noise with variance 0.1 

 

In figure 12(a), raw data is generated which is corrupted by 

additive Gaussian noise of standard deviation of 0.1. In figure 

12(b) data approximated by CPCA is shown, due to large noise 

it cannot map all the points in a circle. The obtained Mean 

Square Error (MSE) is 0.0974. 

 
(a) Raw Data 

 
(b) Circular Data 

Figure 13: CPCA with Gaussian Noise with variance 0.01 

 

In figure 13(a), raw data is generated which is corrupted by 

additive Gaussian noise of standard deviation of 0.1. In figure 

13(b) data approximated by CPCA is shown, due to large noise 

it cannot map all the points in a circle. The obtained Mean 

Square Error (MSE) is 0.0097. 

 
(a) Raw Data 

 
(b) Circular Map 

Figure 14: CPCA with Random Noise with variance 1 
 

 
(a) Raw Data 

 
(b) Circular Map 

Figure 15: CPCA with Random Noise with variance 0.1 

 

 
(a) Raw Data 

 
(b) Circular Map 

Figure 16: CPCA with Random Noise with variance 0.01 
 

In figure 14(a), raw data is generated which is corrupted by 

additive random noise with peak amplitude varying from 0 to 

1. In figure 14(b) data approximated by CPCA is shown, due to 

large noise it cannot map all the points in a circle. The obtained 

Mean Square Error (MSE) is 0.5679. 

In figure 15(a), raw data is generated which is corrupted by 

additive random noise with peak amplitude varying from 0 to 

0.1. In figure 15(b) data approximated by CPCA is shown, due 

to large noise it cannot map all the points in a circle. The 

obtained Mean Square Error (MSE) is 0.0573. 

In figure 16(a), raw data is generated which is corrupted by 

additive random noise with peak amplitude varying from 0 to 

0.01. In figure 16(b) data approximated by CPCA is shown, due 

to large noise it cannot map all the points in a circle. The 

obtained Mean Square Error (MSE) is 0.0058. 

In figure 17, MSE vs. number of points is plotted for both 

Gaussian and random noise. The MSE for random noise is 

lesser in comparison to Gaussian noise. The effect of Gaussian 

noise on MSE is predominant till 500 points, thereafter it starts 

to settle down and become somewhat constant for 1000 number 

of points.  The effect of random noise is settle down after 200 

points, and becomes nearly constant after 1000 points. 
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Figure 17: MSE vs. Number of Points  

 

5. CONCLUSIONS 
This paper discusses a technique to deal with non-linear data in 

case of dimension reduction. It is discussed that how non-linear 

PCA can be realized using ANN. For nonlinear circulator data 

CPCA has been detailed. Using CPCA mapping of circular data 

corrupted with Gaussian and random noise is estimated and 

MSE is obtained. The experiments clearly reveals that the 

circular PCA exactly matches the circular data when noise is 

lesser, it is also found that the MSE error is more for Gaussian 

noise as compared to random noise, however the fluctuation in 

MSE settle down to a nearly constant value if number of points 

are 1000. 
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