

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

30

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

Technology Dependent Solutions for Buffering Policies of Network on Chip

Targeting FPGA Platforms
1Liyaqat Nazir and 2 Roohie Naaz Mir

1Department of Computer Science and Engineering, NIT, Srinagar, India
E-mail: 1liyaqat_02phd13@nitsri.net, 2Naaz310@nitsri.net

ABSTRACT

The communication between processing elements is facing challenges due to power, area, and latency. Temporary storage of flits

required during communication contributes to the major power consumption out of the total power consumed by the on-chip

communication. The ideal NoC interconnect should match its performance cost to that with the network channels (buffers). The

majority of current NoCs consume a high amount of power and area due to router buffers resources only. Removing buffers and

virtual channels (VCs) significantly simplifies router design and reduces the power dissipation by a considerable amount but it

can lead to the unpredictable delay for flit flow hence can substantially degrade the overall application performance. Therefore,

the buffering scheme used in NoC based router plays a significant role in determining the performance of the NoC based mesh.

Moreover, with rapid development in modern FPGAs from prototype designing to low and medium volume productions, it

becomes imperative to consider architectural optimizations that are specific to FPGA fabric only. In this paper, we for the first

time, with the use of technology dependent mapping strategies, we attempt to provide an optimized realization of a FIFO buffer

designed that will help designers to adopt the efficient design of NoC microarchitecture routers. As no such work has been reported

in the past we, therefore, compare our work with technology independent optimization reported. The prime contribution of this

article is that the proposed realization will helps in elimination of the presence of fixed inherent FIFO buffer instantiations as the

proposed realization gives us an idea to explore underlying FPGA fabric more efficiently for the realization of the FIFO than

existing. The implementation targets Virtex-5, Virtex-6 and Virtex-7 FPGA device families from Xilinx.

Keywords: FPGA; Network-on-chip; Buffers; LUT; Reconfigurable computing.

1. INTRODUCTION

 In the past few years, with the concept of Network-on-

Chip communication architecture, NoC has attracted a lot of

attention by providing higher bandwidth and higher

performance architectures for communication on the chip [1].

NoC can provide simple and scalable architectures if

implemented on reconfigurable platforms [2]. Network on chip

offers a new communication paradigm for system on chip (SoC)

design [3]. Many processing elements of SoC are connected

through Network-on-chip (NoC) routers which are arranged in

some regular fashion such as Mesh, linear, torus, 2D, 3D type

of topologies. To achieve high performance, the router should

provide high bandwidth and low latency [4]. Although the

performance of the NoC is normally seen by its throughput,

which is defined by the network topology, router throughput

and the traffic load on the network [5]. Therefore, the routers

for a NoC must be designed to meet latency and throughput

requirements amidst tight area and power constraints; this is a

primary challenge designer are facing as many-core systems

scale [6]. As router complexity increases with bandwidth

demands, very simple routers (non-pipelined, wormhole, no

VCs, limited buffering) can be built when high throughput is

not needed, so require low area and power overhead [7], [8].

Challenges arise when the latency and throughput demands on

on-chip networks become increasingly high [9]. A router’s

architecture determines its critical path delay which affects per-

hop delay and overall network latency [10], [11]. Router

microarchitecture also impacts network energy as it determines

the circuit components in a router and their activity. The

implementation of the routing, flow control and the actual

router pipeline will affect the efficiency at which buffers and

links are used and thus overall network throughput [1]. The area

footprint of the router is clearly determined by the chosen router

microarchitecture and underlying circuits. The critical path of

the data path units in the router and the efficiency of control

path units determine the router throughput [12], [13], [14], [15].

The communication between various processing elements

through NoC routers require various control signal for efficient

flit traversal in the communication fabric as illustrated in Fig 1

[16]. Allocators are used to allocate virtual channels (VC) and

to perform matching between groups of resources on each cycle

[17], [18], [19] [20], [21]. Upon the flit arrival at the input port,

contention for access to the fabric with cells at both input and

output occurs. The router units exchange necessary handshake

signals for data/flit transfer [7], [22]. A VC allocator thus

performs allocation between the input flits and allows at most

one flit contending at the input port to be destined to the selected

output port [23]. In order to reduce the line of blocking, the rest

of the contending flits are buffered into the virtual channels or

buffers of the router so as to service them in coming appropriate

clock cycles [24]. Buffers have simple logic and functionality

as compared to the control logic, but in networks they consume

most of the area resources [25]. However, the smaller the

buffers are, the bigger is the possibility that some traffic is lost

during data flit transfer. As the buffering demands storage

capacity i.e registers or memory, it rapidly increases area costs.

Hence, the right sizing of the buffers is very important. For

successful buffer design, as exact traffic characteristics as

possible are also needed [26]. However, elimination of input

buffers eliminates the need of virtual channels (VCs) besides

causing the reduction in area and power [27]. This increases the

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

31

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

Fig 1. Block diagram of NoC router communication.

Fig 2. Block diagram of NoC router .

chances for head-of-line blocking and causes reduction of

performance in a network on chip based systems. On the other

hand, NoC router architecture generally needs large amount of

FPGA resources [28], [29] which is the barrier to widespread

adoption of NoC routers on FPGA platforms. Moreover, the

limited number of in build block buffer instantiations available

with a given platform increases the barrier to next higher level

[30], [31]. Traditional implementations of FIFO buffering

policy have been platform independence oriented, where the

design process consists of developing the necessary high level

code for application level with some thought given to the

underlying architecture to optimize the code quality [32], [33].

However, the functional diversity and complexity can be

exploited to reveal hidden parallelism helping us to formally

capture concurrencies both within control logic models of

computation and among multiple control logic models of

general logic design [34], [35]. The high-level concurrent tasks

can be then mapped to the underlying communication and

computation resources [36]. This has provided designers with

sufficient impetus to look for platform oriented solutions where

the underlying hardware can be utilized to develop a block level

solution that best matches the functional diversity and

complexity in buffering policies by developing the right level

of parallelism. Accordingly, attempts have been made to

develop custom and reconfigurable architectures for realizing

Fig 3. Block diagram of proposed circular buffer.

various buffering policies in application specific integrated

circuits (ASIC) and field programmable gate arrays (FPGA)

[37], [38], [39], [40], [41], [42], [43], [44].

In this paper, we, therefore, propose an efficient FPGA

based realization of Circular buffer that will aid in the efficient

implementation of NoC router microarchitectures on LUT

based reconfigurable platforms. we have adopted technology

dependent optimizations based approach in this paper. The

approach is implemented successfully on Xilinx’s Virtex-5,

Virtex-6 and Virtex-7 FPGA devices. As the performance

speed-up achieved using technology dependent approach is a

strong function of the nature of the target FPGA family. The

optimizations presented in this work are targeted for FPGAs

with 6-input LUTs. Therefore, for comparisons, we have

considered only those implementations that use FPGAs with 6-

input LUTs. From experimentation; it is observed that FPGA-

based implementation with the technology dependent approach

results not only the consumption of lesser amount of resources

in designing the Buffering network but also gives the possibility

of realizing more number of FIFO buffers efficiently thus

overcoming the barrier of having limited number of inherent

FIFO buffers or block RAMs of FPGA device. the new

realization will help the NoC design community to explore of

having NoC based systems with larger mesh order with better

efficiency in terms of the specific application.

The rest of the paper is organized as follows. Section II

discusses the related work. Section III discusses general FIFO

architecture. Section IV discusses the FIFO realization

proposed in this paper. Section V discusses the preliminary

terminology and the architectural details. Section VI discusses

the technology dependent optimization of the multiply-adder

unit. Synthesis, implementation and discussions are carried out

in section VII. Conclusions are drawn in section VIII and

references are listed at the end.

2. RELATED WORK

 Increased advances in the NoC based communication

paradigm have attracted a lot of attention from industry and

academia. Being a newer field, developing a newer a design

methodology for NoC based communication presents novel and

exciting challenges for the EDA community. With the large

requirement of hardware resources some works had been

reported in the ASIC domain, but to transfer the idea efficiently

NoC channel

Last Flit in the channel, process of de-allocation of channel

First Flit in the channel, process of allocation of channel

Router

Buffers
Router

Buffers

N4, λ4

w

Switch

Matrix

Routing logic,
Arbitration and

Allocaton

S

E
N

LE

FIFO

FIFO

F
IF

O

F
IF

O

W

N

S

E

wL N E

N1, λ1

N2, λ2

N3,λ3

N5, λ5

Allocator

Allocator

Allocator

Allocator

Allocator

Switch

Allocator

Write enable

D=0

Empty

Read Enable

D=Buffer length

Read enable

Read Clock

Buffer full

Write Enable

Read

D

Write Clock

Read Address

logic controller

Write Address

logic control ler

RAM LUTs

TMD

C_in_select

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

32

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

and entirely on reconfigurable platforms is yet a milestone to be

achieved. NoC advances on reconfigurable platforms are

limited by the availability of the limited amount of logic

resources and memory on FPGAs [38]. Reconfigurable

platforms fail to provide the amount of logic needed for the

implementation of an efficient NoC system. Buffers are critical

components of a NoC router and channel buffers at each router

in the NoC have a serious impact on the overall area [45]. In

NoC based architectures buffering policies play a key role in

determining the throughput, latency, area utilization and energy

consumption. In order to reduce the implementation overhead

in NoC, Efforts are required to minimize the overall use of

buffering resources. Hence, a considerable research effort has

been devoted to buffering policies that can be adopted in a NoC

router microarchitecture in the last few years. While these

policies focus mainly on energy efficiency and latency, but they

also increase the complexity of the router. Throughout, the key

parameter of the NoC router needs to be maintained while

reducing the complexity of router design. Sophisticated input-

buffered routers have been proposed for extending throughput,

latency and clock speed. For instance, high-speed design of a

FIFO has been proposed for extending steady data transmission

between asynchronous clock domains in work [44]. The authors

have exploited the instantiation of complete inbuilt RAM block

available in the Xilinx based reconfigurable platforms. This has

certainly provided an efficient FIFO buffering architecture as

the in-build cores or instantiations are highly efficient.

However, because of limited blocks available, they are unable

to suffice the demands of a NoC based number. The authors in

work [43] have presented a novel idea of realizing a FIFO

buffer by presenting a custom cell-based design. The proposed

design is aimed to provide a reliable flow of flits with reduced

the latency and channel blocking overheads in a network on

chip based system. The design is better than earlier reported,

but the authors of the work have not given thought to the

technology dependent optimizations in the work, as a result, the

work inefficiently consumes large FPGA resources available

with the reduction in the performance also. A similar work has

been reported in [46]. The authors present a design method of

asynchronous FIFO memory that primarily aims at buffer's

capacity to prevent spillovers despite the fullness of data. The

work is inefficient no thought is being given to the underlying

architecture of the FPGA platform. Some other articles that

report the work mainly aimed at throughput and latency

optimization of router architecture, indirectly by buffer

implementation, but logic resource utilization had not been

considered as a performance parameter include the work in

[47], the authors proposes a flit-reservation flow control, which

sends control flits ahead of data flits, and timestamps these

control flits so that buffers can be allocated just-in-time when

data flits arrive. However, this still relies on input buffers. The

improvement of the congestion of incoming packets can be also

checked by the virtual channel (VC) scheme as presented in

work [48], [49]. Virtual channel scheme multiplexes a physical

channel using virtual channels (VCs), leading to the reduction

in latency and increase in network throughput. The insertion of

VCs also enables to implement policies for allocating the

physical channel bandwidth, which enables support for quality

of service (QoS) in applications [50]. All the above-mentioned

approaches use technology independent optimizations to

enhance the performance of the Network on chip router. In this

paper, we take an alternate approach and propose realizations

that are based on technology dependent optimizations. As

already mentioned the performance speedup achieved using

technology dependent approach is a strong function of the

nature of the target FPGA family. The optimizations presented

in this work are targeted for FPGAs with 6-input LUTs.

Therefore, for comparisons, we have considered only those

implementations that use FPGAs with 6-input LUTs.

3. FIFO ARCHITECTURE

An abstract FIFO provides a push and a pop interface and

informs its connecting modules when it is full or empty. A push

(write) is done when valid data are present at the input of the

FIFO with FULL: signal low. At the read side, a pop (read)

occurs when the upstream channel is ready to receive new data

for the buffer with low empty signal, i.e., it has valid data to

send. There are two types of FIFO designs and architectural

schemes: serial and parallel [51], [52], [53], [54], [55]. The

serial FIFO scheme such as shift registers the primitive FIFO

generation that works by fall-through principle (or pipeline).

However, with the advancement of architecture and circuit

styling techniques the architectures of conventional FIFOs are

constantly being improved. Currently, most of the FIFOs used

are of parallel type, which are faster than serial FIFO [56]. This

type of buffering scheme finds wide application in network on

chip due to its relation to the fall through concept where the new

arrival flit is stored (pushed) at the tail location of FIFO, and

with each shift request, flits are shifted one location (slot)

toward the head of queue. The process of pushing data into the

asynchronous FIFO is done by continuously monitoring full

and empty control signals from the FIFO buffer by the sender.

The sender sets the request signal (push_req signal) after the

data to he sent are ready. That data flits are on control basis

continuously pushed into the consecutive buffer locations. The

process of popping data from the asynchronous FIFO is equal

to pushing process except that the data is supplied by the FIFO

and obtained by the receiver. The control logic block contains

control logic needed to control push pop operations on the

actual memory block.

4. PROPOSED FIFO REALIZATION

 We propose an efficient realization of FIFO buffer

that will help in efficient implementation of NoC router

microarchitectures. In our design FIFO designed as a circular

array of identical cells RAM LUTs from SLICEM present in

the FPGA fabric. The block level illustration of the proposed

circular buffer is shown in Fig3. It mainly comprises of a pair

of separate addressable controllers, each for writing (push) and

pop operations. A separate full detector and an empty detector

logic block, and control logic for the put operation and get

operation. The full and empty detectors are required to observe

the state of the FIFO and determine whether the FIFO is full or

empty. The input and output behavior of the FIFO is controlled

by the flow of two tokens, generated by a write address logic

controller logic and a read address logic controller respectively:

a put token is used to enqueue data items and a get token is used

to dequeue data items. Once a data item is enqueued, it is moved

only when it is dequeued. If the signal to put token generator is

asserted, the FIFO enqueues one data item and rotates the put

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

33

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

(a) (b)

Fig 4. Logic illustration of (a) ALC (b) TMD.

Fig 5. Logic illustration of TDT block. Fig 6. Block level illustration of DRB

token to the left. If it is deasserted, the put token is stalled with

no enqueue operation in the FIFO. Similarly, the get controller

enables and disables the get operations. Tokens move counter

clockwise through the array of LUT based RAM cells. The LUT

RAM cell having the corresponding put token (tail of the queue)

has permission to store the enqueued data item, and the cell

having the corresponding get token (head of the queue) has the

permission to dequeue its data to the neighboring connecting

node. The read address logic controller and the write address

logic controller logic is designed in such a way that the get

token is never ahead of the put token. After the token has been

consumed by the LUT-based RAM cell, it will be passed to its

left neighbor at the beginning of the next clock cycle, after the

respective operation is completed. The movement of tokens

across the LUT RAM cells is controlled both by interface

requests as well as the state of the FIFO (full or empty), which

are combined into the global signals Write and Read.

5. PRELIMINARY TERMINOLOGY AND

ARCHITECTURAL DETAILS

Logic synthesis FIFO buffer is concerned with realizing a

desired functionality with the minimum possible cost. In the

context of digital design of a buffering policy, the cost of a

circuit is a measure of its speed, area, power or any combination

of these. The block level illustration of the proposed realization

of the FIFO shown in the Fig 3. The primary blocks required to

design the FIFO are the address logic controllers (ALC), token

distance tracking (TDT), token magnitude detection (TMD),

control signal generation blocks and a distributed RAM block

(DRB). Distributed RAM is crucial to many high-performance

applications that require relatively small embedded RAM

blocks, such as FIFOs or small register files. The address logic

controllers are realized with the help of digital synchronous

counter logic network. So two separate n-bit address logic

controllers are required for separate write and read operations

of the FIFO into 2n RAM block location of each LUT based

RAM block. The separate use of address logic controller block

is required for the separate address generation in respective

ports. As we are targeting a ring FIFO buffer therefore a

synchronous counter is required for the desired operation. The

logic level diagram of an address logic controllers realized with

help of fast carry4 chain present in the FPGA target device is

shown in Fig4(a). The logic controller shown is capable of

providing an address realization of FIFO with a depth order of

 A3 A2 A1 A0

C_out

Latch Latch Latch Latch

Reset

C_in1=0

C_in_select

 a3 b3 b2 a2 a1 b1 b0 a0

 d3 d2 d1 d0

C_in

C_in_select

SPO

DPO

Read

Read

WCLK

Address

Write

D

Dual- Port RAM

R/W Port

Read Port

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

34

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

16 (24=16) with address bitsA0, A1, A2,A3. These address bits

are used for physical address realization of the RAM blocks and

are used by the token distance tracking block. The token

distance tracking (TDT) block is realized with the help of a

ripple carry subtraction block illustrated in Fig 5. The TDT for

the FIFO is also realized with the help of fast carry4 chain logic

present in the target reconfigurable platform. The TDT block

takes inputs from token magnitude detection (TMD) block as

illustrated in Figure 3. The logic network of a TMD is shown in

Fig 4(b). TMD calculates the absolute distance between the

tokens generated by ALC by providing a signal C_in_select

input to the TDT block. TDT logic provides output to simple

logic networks needed for both read and write ports and are

called as the signal generation blocks. The signal generation

blocks upon suitable receiving suitable inputs from TDT block

generate Empty and Full signals that are needed for

synchronization of communication ports during the buffering of

data into the actual storage cells or distributive RAM block. The

distributive RAM block has been realized as 16x1 dual-port

RAM16X1D primitive instantiation requiring two 16x1 LUT

RAMs present within a single SLICEM slice of the underlying

fabric, as illustrated in Fig 6. Data is provided simultaneously

to both LUT RAMs and controlled by address A[3:0], WE, and

WCLK. The dual port RAM (DPR) has two access ports D and

DPO as illustrated in Fig 6. For a general depth of n-bit FIFO

realization, each 16 x 1-bit RAM is cascaded for n-occurrences

for deeper and/or wider memory applications in the form of an

array of memory to store the data, with a minimal timing

penalty incurred through specialized logic resources.

Distributed RAM writes synchronously and reads

asynchronously by two separate sets of control signal, address

and data busses. However, if required by the application, use

the register associated with each LUT to implement a

synchronous read function. For dual-port RAM16X1D, the first

LUT out of two is required for the implementation of the A[3:0]

port, i.e. the write and read address, and the second LUT is

required to implement an independent read-only address i.e.

DPRA[3:0] port. The port A address buss is an address bus

takes its address values from write ALC, data bus output from

the memory is DPO. Port D is the actual data buss that provides

data to be stored in data memory. The control signal blocks act

as an arbitration circuit used to determine which port has the

right to write the memory, when to read and when ports are

trying to update the data in the same address at the same time.

Such kind of RAM realization is supported by various target

devices such as Spartan-3 Virtex, Virtex-E, Spartan-II, Spartan-

IIE, Virtex-II, and Virtex-II Pro FPGAs.

6. TECHNOLOGY DEPENDENT

OPTIMIZATIONS

Technology dependent optimizations are used to transform

the initial Boolean network into a circuit netlist, efficiently

compatible with the target logic elements. The transformation

is carried out optimally in accordance with the logic distribution

among the targeted elements so ensure minimum possible LUT

depth and minimum resource utilization of the target device.

The target element in the majority of FPGAs is k-input LUT

[56], [57]. It is a block RAM function generator that can

implement any Boolean function of k variables by directly

storing its truth table. State-of-art FPGAs support 6-input, dual

output LUTs with the capacity of implementing a single 6-input

Boolean function or two 5-input Boolean functions that share

inputs [58], [59], [60]. An efficient utilization of this circuit

element could lead to implementation of higher logic densities

resulting in a reduced fan-out of the logic nets and thus a

minimal-depth circuit.

Technology dependent optimization using LUTs is carried

out in two steps. Firstly, the entire digital network is partitioned

into suitable sub-networks or blocks. Individual nodes within

each sub-block are then covered with suitable cones that maps

a local Boolean function or a local truth table onto a separate

LUT. Secondly a reverse process of the above step is carried,

i.e. the entire network is then reconstructed by assembling the

individually optimized sub-networks. Since the circular buffer

is an assembly of ALC, TDT, TMD and DRB. An optimized

realization of these individual sub networks could be adopted

to realize an optimized realization of a circular buffering policy.

A. Technology dependent optimization of ALC and

TMD

Figure 4 shows the Boolean network realization of ALC

block and TMD block respectively. The network is traversed

beginning at the primary inputs and proceeding toward the

primary outputs. At each node in the network a best circuit is

constructed that implements the sub-network extending from

the node to the primary inputs. Next, we try to find an optimal

covering for the nodes within each sub-network. A straight

forward approach would be to cover each node with a separate

cone and then map the local function implemented by each cone

onto a separate LUT as shown in figure 4. The overall depth at

network output is therefore, five respectively in each network.

The LUT count is twenty-one and twenty respectively, the

shaded blocks in the figure represents the LUTs consumed.

Since we are targeting 6-input LUTs the implementation in

figure 4 leads to severe under-utilization of the available

resources in the considered network graphs. The number of

required LUTs for realization and the overall depth may be

further reduced with the help of tree minimization in the sub-

networks. A further saving in resources is possible by

exploiting the reconvergent PI nodes in the carry sub-network.

A node in the network with a fan-out greater than one that

terminates at other nodes within the same network is a source

of reconvergent path. Reconvergent paths can be realized

within the LUT and the total number of inputs is reduced. This

is shown in the circuit of Fig 7 and Fig 8. The circuit, shown in

Fig 7 is an optimized realization of ALC and TMD using 6 input

LUTs. The depth of the circuit is now reduced to one and the

total LUT count is also reduced to three in the optimized

realization of ALC and the LUT depth count in realizing TMD

has been reduced to one and LUT utilization is reduced to two.

In order to ensure that the optimization done prior to the design

entry should not get over-ridden during the mapping and PAR

phases. We have re-defined the coding strategy at the design

entry phase. Instead of writing conventional inferential codes,

we adopt an instantiation based coding strategy, wherein a

target element is directly called and the desired functionality is

assigned to it. This ensures a controlled mapping.

The following instantiations were used to map TMD circuit

illustrated in Fig 7.b.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

35

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

equalblock2:LUT6_2 generic map (INIT => X"9009000022b20000") port map (AlessB(1),AeqB(1),bin(3),ain(3),bin(2),

ain(2),'1','1');

equalblock1:LUT6_2 generic map (INIT => X"9009000022b20000") port map (AlessB(0),AeqB(0),bin(1),ain(1),bin(0),

ain(0),'1','1');

CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => '0',CYINIT => '0', DI => AlessB, S => AeqB);

The following instantiations were used to map the ALC network.

LUT2_L_inst0 : LUT2_L generic map (INIT => X"2") port map (Sinrd(0), q1rd(0), sr(0));

LUT2_L_inst1 : LUT2_L generic map (INIT => X"2") port map (Sinrd(1), q1rd(1), sr(1));

LUT2_L_inst2 : LUT2_L generic map (INIT => X"2") port map (Sinrd(2), q1rd(2), sr(2));

LUT2_L_inst3 : LUT2_L generic map (INIT => X"2") port map (Sinrd(3), q1rd(3), sr(3));

CARRY4_inst_read : CARRY4 port map (COrd,Ord,'0','1',DIrd,Sinrd);

FDSE_inst0 : FDRE generic map (INIT => '0') port map (Q => q1rd(0),C => clk,CE => Rd_ce,R => S,D => Ord(0));

FDSE_inst1 : FDRE generic map (INIT => '0') port map (Q => q1rd(1),C => clk,CE => Rd_ce,R => s,D => Ord(1));

FDSE_inst2 : FDRE generic map (INIT => '0') port map (Q => q1rd(2),C => clk,CE => Rd_ce,R => S,D => Ord(2));

FDSE_inst3 : FDRE generic map (INIT => '0') port map (Q => q1rd(3),C => clk,CE => Rd_ce,R => S,D => Ord(3));

The following instantiations were used to map the TMD network.

equalblock2:LUT6_2 generic map (INIT => X"9009000022b20000") port map (AlessB(1),AeqB(1),bin(3),ain(3),bin(2),

ain(2),'1','1');

equalblock1:LUT6_2 generic map (INIT => X"9009000022b20000") port map (AlessB(0),AeqB(0),bin(1),ain(1),

bin(0),ain(0),'1','1');

CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => '0',CYINIT => '0', DI => AlessB, S => AeqB);

The following instantiations were used to map the TDT block.

LUT6_2_inst0 : LUT6_2 generic map (INIT => X"ac00000099000000") port map (p(0),g(0),bin(0),ain(0),cout1(1),

'1','1','1');

LUT6_2_inst1 : LUT6_2 generic map (INIT => X"ac00000099000000") port map (p(1),g(1),bin(1),ain(1),cout1(1),

'1','1','1');

LUT6_2_inst2 : LUT6_2 generic map (INIT => X"ac00000099000000") port map (p(2),g(2),bin(2),ain(2),cout1(1),

'1','1','1');

LUT6_2_inst3 : LUT6_2 generic map (INIT => X"ac00000099000000") port map (p(3),g(3),bin(3),ain(3),cout1(1),

'1','1','1');

CARRY4_inst_absolute_diffrence_circuit : CARRY4 port map (CO => cout2, O => diffrence, CI => '1',CYINIT => '1', DI

=> g, S => p);

The Boolean network now has an LUT count of only three

and a depth of only one LUT. The complete efficient realization

is shown in the Fig 7. The Network is realized with help of three

6-input dual output LUTs and two six input LUT with a total

LUT depth of one respectively for ALC and TMD network.

FPGAs have a well-defined design flow that starts with

design entry and proceeds through phases like synthesis,

translation, mapping and place and route (PAR).It was

mentioned in the introductory section that the design cycle in

FPGAs is simple due to the availability of the computer aided

design (CAD) tools that handle the majority of the technology

dependent steps like mapping and PAR. Technology dependent

optimizations mainly focus on improving the mapping of

Boolean networks onto target LUTs. However, with modern

CAD tools, both technology mapping and PAR are automated

and the optimization process is not transparent to the user [64].

Thus any optimization done prior to the design entry may get

over-ridden during the mapping and PAR phases. To counter

this issue we re-define the coding strategy at the design entry

phase. Instead of writing conventional inferential codes, we

adopt an instantiation based coding strategy, wherein a target

element is directly called and the desired functionality is

assigned to it. This ensures a controlled mapping. The following

instantiations were used to map the various networks in the

proposed FIFO buffer.

B. Technology dependent optimization of RAM block

In every topology of a NoC based communication network,

there is an exchange of data flits between various IPs at a very

rapid rate. Intermediate storage or buffering is always required

when data arrive at routing nodes at a high

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

36

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

(a) (b)

(c)

Figure 7 (a) Optimized utilization of LUTs for realisation of Boolean network of (a) ALC (b) TMD (c)

TDT using 6-input LUT

(a)

Figure 8 Dual-port distributed RAM block (16X1D) LUT realization for single data bit

rate or in batches, but are processed slowly or irregularly.

Modern FPGAs provides a variety of slice elements to support

logic, arithmetic, and ROM functions. In addition to this,

FPGAs is equipped with some slices to provide additional

functions such as storing data using distributed RAM and

shifting data with 32-bit registers. Slices that support these

additional functions are called SLICEM. Such basic memory

capabilities are embedded within the CLBs of various Xilinx

FPGA families. Multiple LUTs in a SLICEM can be combined

in various ways to store large amount of data. The function

generators (LUTs) in SLICEMs can be implemented as an

asynchronous RAM resource called a distributed RAM

element. RAM elements are configurable within a SLICEM to

implement various configurations of RAM [61]: Distributed

RAM modules are synchronous (write) resources. A

synchronous read can be implemented along with a storage

element or a flip-flop in the same slice. The use of flip-flop for

realizing the distributed RAM, improves the performance by

decreasing the delay into the clock required to operate the flip-

flop. However, an additional clock latency is added. The

 A3 A2 A1 A0

C_out

Latch Latch Latch Latch

Reset

LUT 01 LUT 02

Carry chain 01

SLICEL latches

LUT 03

a1 b1 a0 b0 b1 a1 b1 a1 b0 a1 a3 b3 a2 b2 b3 a3 b3 a3 b2 a2

C_in1=0
C_in_select

 a3 b3 b2 a2 a1 b1 b0 a0

 d3 d2 d1 d0

C_in

C_in_select

16X1 LUT

RAM

(Read/

Write)

16X1 LUT

RAM

(Read only)

SPO

D

A[3:0]

WE

WCLK

DPRA [3:0]
DPO

SLICE M

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

37

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

distributed elements share the same clock input. For a write

operation, the Write Enable (WE) input, driven by either the CE

or WE pin of a SLICEM, must be set High. The memory

structure of FIFO in this work is realized with the help 16x1

dual-port distributed RAM block (16X1D). The 16X1D

primitive requires both 16x1 LUT RAMs within a single

SLICEM slice, as shown in Fig 8. The first 16x1 LUT RAM,

with output on single-port RAM (SPO), implements the

read/write port controlled by address A[3:0] to read and write.

The second LUT RAM implements the independent read-only

port controlled by dual port read only address (DPRA), i.e.

DPRA [3:0]. Data is presented simultaneously to both LUT

RAMs, again controlled by address A[3:0], WE, and WCLK.

The entire RAM block is realized by cascading the distributed

RAM blocks n-time for desired n-bit flit width.

 The following instantiations were used to map the circuit in Fig

8. for bit-0 of the data flit.

RAM32X1D_inst_bit_0: RAM32X1D generic map

(INIT => X"00000000") -- Initial contents of RAM port map

(DPO(0), SPO(0), WrAd(0), WrAd(1), WrAd(2), WrAd(3),

WrAd(4), Din(0), Rdad(0), Rdad(1), Rdad(2), Rdad(3),

Rdad(4),WCLK, wr_CE);

7. SYNTHESIS AND IMPLEMENTATION

The implementation in this work targets FPGAs that have

6-input LUTs as the basic logic element. In particular, we have

considered devices from Virtex-5, Virtex-6 and Virtex-7 FPGA

families from Xilinx. The implementation is carried for

different word lengths of the data flits needed to be stored. The

parameters considered are area, timing and power dissipation.

The area is measured in terms of LUTs, flip-flops and slices

utilized. Timing analysis may be static or dynamic. Static

timing analysis gives information about the Minimum period

and operating frequency of the design. Static timing analysis is

done post synthesis and post PAR. However, the metrics

obtained after synthesis are often not accurate enough due to the

programmability of the FPGA which allows for interconnect

delays to change significantly between iterations. Therefore, the

metrics presented in this paper are post PAR. Dynamic timing

analysis verifies the functionality of the design by applying test

vectors and checking for correct output vectors. An important

result from the dynamic timing analysis is the switching activity

information captured in the value charge dump (VCD) file.

Apart from post PAR timing analysis the functionality of the

design is also verified by dumping the design on the Virtex-5,

Virtex-7 platform. Power dissipation is given by the sum of

static power dissipation and dynamic power dissipation. Static

power dissipation is device specific and is mainly determined

by the specific FPGA family. Dynamic power dissipation is

related to the charging and discharging of capacitances along

different logic nodes and interconnects. Dynamic power

dissipation mainly consists of the logic power, clock power and

signal power [62]. Logic power depends on the amount of on-

chip resources being utilized by the design. Clock power is

proportional to the operating frequency. Signal power depends

on the switching activity and the density of the interconnects.

For simulation and metrics generation similar test benches have

been used and are typically designed to represent the worst case

scenario (in terms of switching activity) for data entering into

the FIFO buffer. Design entry is done using VHDL. As

mentioned earlier instantiation based coding strategy is used.

The constraints relating to synthesis and implementation are

duly provided and a complete timing closure is ensured.

Synthesis and implementation is carried out in Xilinx ISE 12.1

[63]. Power analysis is done using the Xpower analyzer tool.

There has been no work regarding the implementation of

FIFO buffering policies using the technology dependent

optimizations. Since such optimizations are a strong function of

the type and nature of the underlying fabric, we have considered

some technology independent FIFO buffer realizations that

utilize the same FPGA devices. The idea is to provide a

comparative analysis of the performance speed up that is

achievable using the technology dependent (TD) approaches.

However, our initial comparisons focus on the performance

improvement achieved over the buffer realizations based on

programmable logic unit cells implemented in [43] targeted for

Xilinx FPGAs.

A. Area Analysis

Table 2 provides a comparison of the different FPGA

resources utilized by the realization of the circular FIFO

buffering policy based on the technology optimized sub blocks.

The depth of FIFO buffer is 16 bits and the flit order is varied

as 23, 24, and 25. Target devices are xc5vlx50, xc6vlx195t and

xc7vx485t from Virtex-5, Virtex-6 and Virtex-7. Further

analysis is carried out by plotting the various resources utilized

as a function of the flit with. The results are shown in Fig 10.

The number of Flip flops instantiated from the slice for

realizing ALC block remains fixed upto 25 bits this is illustrated

in figure 10(b), further more increase in flit size demands more

FPGA resources in terms of LUT’s and slices this increasing

demand is illustrated in figure 10(c) and 10(d) respectively.

Since the proposed FIFO buffer is realized with the help of

SLICEM BRAM LUT’s, therefore in general for an n-bit flit

size of FIFO it requires n-memories and n-dual port RAMs.

This is illustrated in figure 10 (e),(f) respectively.

Next we compare our implementation against FIFO buffer

implementation presented in the [43]. The work presents a

FIFO design using flip flop and memory cell design, proposed

by the authors. The authors have considered the direct Xilinx

ISE based realizations of the Buffer. Two sets of results have

been reported giving details about the device utilization

summary and timing parameters of the proposed design

however, the power dissipation of the proposed design is not

reported. The devices considered are Vertex-7 device. We

implemented our realization with the same target device and

same package. The performance parameters recorded PAR are

mentioned in table 1 and table 3 and illustrated in figure 9. It is

observed that the FIFO buffer based on the technology

optimized mapping realization of the network on LUTs uses the

underlying fabric efficiently hence relatively lesser FPGA

resources are consumed. But the efficient realization of the

underlying fabric puts a prominent critical path delay in the

design thus lowering the clock frequency. This has resulted

because the instantiation based coding strategy used can ensure

constraints related to synthesis and implementation while as

mapping constraints are taken care by Xilinx ISE itself.

Sometimes the Boolean network may be complex to map,

providing poor timing closure while optimizing other goal of

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

38

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

parameters of interest. Hence, as a result of the optimization the

area, latency and power a tradeoff in the speed is observed. The

results of the work [44] are also compared with the proposed

realization. The authors have used BRAM Block configurable

memory module that is generated by the EDK design tools

based on the configuration of the BRAM interface controller IP.

The resource utilization summary is not completely mentioned.

However, the work has a poor clock speed as mentioned in table

1.

B. Timing Analysis

Technology optimized structures are implemented with

minimum possible depth; therefore, the critical path delays are

quite low. Since clock frequency is also a strong function of the

propagation and routing delays associated with the critical path,

a minimum depth circuit also ensures higher operating

frequencies. Table 3 provides a comparison of the critical path

delay and maximum clock frequency for the FIFO buffer

realization based on the technology optimized mapping and the

one based on the memory cell based design. The data flit length

is 8bits and the depth of the buffer is 16. Target devices are

xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6

and Virtex-7. Further analysis is carried out by plotting the

maximum clock frequency as a function of data flit width and

target devices. The results are shown in figure 11. We can

observe that the clock speed decreases with the increase in flit

size this is due to the increase in the size of TDT block and due

to the increase in memory logic needed to make larger flit size

FIFO buffers. As the BRAM LUT blocks used for this purpose

need a write clock for push operations therefore increasing

FIFO memory size affects the clock speed. More over the

mapping constraints set by Xilinx ISE itself are not part of an

optimization coding strategy hence this also impacts the timing

closure while optimizing other parameters of interest thus

affecting the clock speed of the FIFO buffer.

39

154

0

24

8

28

8 8

Slices LUT's B.RAM FF's

0

20

40

60

80

100

120

140

160

U
se

d
 a

s
N

u
m

b
er

FPGA RESOURCES

 [43]

 This work

Figure 9 Resource utilization for technology optimized and memory cell based FIFO

TABLE 1 RESOURCE UTILIZATION FOR TECHNOLOGY OPTIMIZED V/s REPORTED WORK.

FIFO Buffer Design LUTs Flip-flops Slices BRAM Clock frequency (MHz)

Technology dependent [this work] 28 8 8 8 366

Logic cell unit based [43] 154 24 39 0 293

RAMB_S8_S8 [44] N.R N.R N.R 8 100

TABLE 2 RESOURCE UTILIZATION FOR DIFFERENT FIFO BUFFER REALIZATIONS WITH VARIOUS FLIT

SIZES

Device xc5vlx50t xc6vlx195t xc7vx485t

Package ff1136 2ff784 -

Word size 23 24 25 23 24 25 23 24 25

Slice registers 8 8 8 8 8 8 8 8 8

Flip-flops used as 8 8 8 8 8 8 8 8 8

Slice LUT's 24 34 50 26 32 48 28 36 52

Occupied slices 6 10 13 8 10 14 8 11 18

Fully used LUT-FF pairs 8 8 8 8 8 8 8 8 8

No. used as memory 8 16 32 8 16 32 8 16 32

Dual port RAM 8 16 32 8 16 32 8 16 32

TABLE 3 TIMING ANALYSES FOR TECHNOLOGY OPTIMIZED AND LOGIC CELL BASED FIFO

FIFO Buffer Design Critical path (ns) Max. clock frequency (MHz)

Technology dependent [this work] 6.715 293

Logic cell unit based [43] 8.751 366

RAMB_S8_S8 [44] N.A 100

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

39

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

TABLE 4 CRITICAL PATH DELAY AND MAXIMUM CLOCK FREQUENCY FOR DIFFERENT FLIT SIZES OF

BUFFERS REALISED ON VARIOUS DEVICES

Device xc5vlx50t xc6vlx195t xc7vx485t

Max. clock frequency (MHz) 23-bit 263.644 304.822 293.637

Max. clock frequency (MHz) 24-bit 201.288 252.755 200.16

Max. clock frequency (MHz) 25-bit 147.471 198.177 89.314

Critical path delay (ns) 23-bit 4.23 4.86 4.92

Critical path delay (ns) 24-bit 4.91 5.038 5.055

Critical path delay (ns) 25-bit 5.022 5.26 5.33

TABLE 5 POWER DISSIPATION FOR TECHNOLOGY OPTIMIZED FIFO BUFFERS WITH VARIABLE FLIT SIZES

FPGA

Resource

Power Dissipation (mW)

xc5vlx50t xc6vlx195t xc7vx485t

Flit size (bits) 23 24 25 23 24 25 23 24 25

Clocks 1.03 1 0.9 1.43 1.21 1.15 1.64 1.26 1.21

Logic 0.08 0.32 0.45 0.06 0.29 0.37 0.047 0.27 0.33

Signals 0.74 0.8 1.09 0.7 0.77 1.01 0.55 0.74 0.595

IOs 24.78 27.6 37.75 18.2 21.4 29.12 17.1 19.1 25.33

Dynamic 26.63 29.72 40.19 20.39 23.67 31.65 19.337 21.37 27.465

Quiescent 529.37 560.54 529.38 529.37 712.12 711.95 379.38 206.51 206.44

Total 582.63 619.98 609.76 1.43 1.21 1.15 418.054 249.25 261.37

TABLE 6 POSSIBLE NUMBER OF FIFO BUFFERS THAN CAN BE REALISED USING TECHNOLOGY OPTIMIZED

MAPPING.

FIFO Buffer FPGA Resource Buffering realization

xc5vlx50t xc6vlx195t xc7vx485t

Maximum Memory LUTs

available 7680 16720 16720

Flit size (bits) 23 24 25 23 24 25 23 24 25

Proposed realization Number of Buffers possible 960 480 240 2090 1045 522 2090 1045 522

FIFO18 (Xilinx based) Number of Buffers Present 60 60 N.S 344 344 N.S 1030 1030 N.S

Tables 4 mentions the PAR values of the critical path delay

recorded for the proposed FIFO with various flit sizes for the

technology optimized realization. The devices considered are

xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6

and Virtex-7 respectively. The various Flit sizes taken are 8-bit,

16-bit and 32-bits word length. The depth of the buffer is taken

as 16.

 C. Power Analysis

Technology dependent optimization reduces the power

dissipation in two ways. First, the high activity switching nodes

within a network are hidden within the LUTs in the final circuit

netlist. This reduces the overall switching activity associated

with the logic nodes. Second, technology dependent

optimization results in a minimal depth circuit with a high logic

density. This reduces the length of interconnects. Since

interconnects in FPGAs are reconfigurable switches, there is a

further reduction in the switching activity and thus the power

dissipated. The analysis is done for a constant supply voltage

and maximum operating frequency in each case. Test benches

were designed for worst-case switching activity and the buffer

functionality was verified for more than data flits. The design

node activity from the simulator database along with the power

constraint file (PCF) was used for power analysis in the Xpower

analyzer tool. Table 5 gives the detailed power dissipation for

proposed FIFO structure generated using technology optimized

mapping. The target device is Virtex-5, Virtex-6 and Virtex-7

and the flit sizes taken are 8-bit, 16-bit and 32-bits word length.

Since the power dissipation in the existing work is not reported

therefore this paper shows no comparison of the power

dissipation with the existing designs or reported work.

Furthermore, the power dissipated in clocking resources varies

with the clock frequency. Since technology optimized design

operates at slightly higher frequency in general but operating

frequency decreases with the increase in flit size as explained

above, the power dissipated by clocking resources also

decreases as illustrated in Figure 12. (a). From figure 12. (b) it

can be seen the logic power increases as the flit size increases,

this is due to the increase in the logic with increase in the flit

size. As the number of inputs, outputs and the respective signals

also increase with flit size, thus leading to the increased IO’s

and signal power as illustrated in figure 12. (c), (d) respectively.

Finally, growth of logic with the flit size leads to increased logic

activity, thus increased switching activity, hence increased

dynamic power dissipation as illustrated in 13. (e). In general,

power dissipated by on-chip resources is lesser for technology-

optimized design because of the efficient utilization of the

underlying resources. Finally, a reduction in switching activity

due to hiding of nodes and reduction of interconnects results in

lower power dissipation in the signals. Figure 12 gives the

variation in power dissipation in different FPGA resources as

the flit size for buffering varies. Table 6 gives the possibility of

realizing efficient FIFO buffers based on technology dependent

optimizations and compare it with the inherent FIFO (FIFO 18)

resource present in the FPGA device. Table 6 gives the

possibility of realizing efficient FIFO buffers based on

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

40

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

8 8 88 8 88 8 8

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

1

2

3

4

5

6

7

8

9

N
u
m

b
er

 u
se

d

Target Device

 8bit

 16bit

 32bit

Slice Registers

8 8 88 8 88 8 8

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

1

2

3

4

5

6

7

8

9

Flip Flops

N
u
m

b
er

 u
se

d

Target Device

 8bit

 16bit

 32bit

(a) (b)

24 24

28

34 34
36

50 50
52

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

10

20

30

40

50

60
Slice LUT's

N
u
m

b
er

 u
se

d

Target Device

 8bit

 16bit

 32bit

6

8 8

10 10
11

13
14

18

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

2

4

6

8

10

12

14

16

18

20
Occupied Slices

N
u

m
b

er
 u

se
d

Target Device

 8bit

 16bit

 32bit

(c) (d)

8 8 8

16 16 16

32 32 32

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

5

10

15

20

25

30

35

Memory

N
u
m

b
er

 u
se

d

Target Device

 8bit

 16bit

 32bit

8 8 8

16 16 16

32 32 32

xc5vlx50t-3-ff1136 xc6vlx195t-2ff784 xc7vx485t-ffg1157

0

5

10

15

20

25

30

35

Dual port RAM

N
u

m
b

er
 u

se
d

Target Device

 8bit

 16bit

 32bit

(e) (f)

Figure 10 Resource utilization for technology optimized for different flit sizes.

2
6
3
.6

4
4 3
0
4
.8

2
2

2
9
3
.6

3
7

2
0
1
.2

8
8 2

5
2
.7

5
5

2
0
0
.1

6

1
4
7
.4

7
1 1

9
8
.1

7
7

8
9
.3

1
4

xc5vlx50t xc6vlx195t xc7vx485t

0

50

100

150

200

250

300

350

Clock Frequency

F
re

q
u

en
cy

 (
M

H
z)

Target Device

 8bit

 16bit

 32bit

Figure 11 Timing analyses for technology optimized FIFO realizations with different flit sizes.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

41

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

1.03 1
0.9

1.43

1.21
1.15

1.64

1.26
1.21

Clocks 8bit Clocks 16-bit Clocks 32-bit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Clock Power

P
o
w

er
 (

m
W

)

Flit size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

 (a)

0.08

0.32

0.45

0.06

0.29

0.37

0.047

0.27

0.33

8bit 16 bit 32 bit

Logic Power

P
o
w

er

in

 m
W

Flit size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

 (b)

24.78

27.6

37.75

18.2

21.4

29.12

17.1
19.1

28.465

8bit 16 bit 32 bit

0

5

10

15

20

25

30

35

40

IOs Power

P
o
w

er
 (

m
W

)

Flit Size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

 (c)

0.74
0.8

1.09

0.7

0.77

1.01

0.55

0.74

0.595

8bit 16 bit 32 bit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Signal Power

P
o
w

er
 (

m
W

)

Flit Size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

(d)

26.63

29.81

41.38

20.39

23.67

32.65

19.337
21.37

28.465

8bit 16 bit 32 bit

0

5

10

15

20

25

30

35

40

45

Dynamic Power

P
o

w
er

 (
m

W
)

Flit Size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

(e)

Figure 12 Variation in power dissipation in different FPGA

resources for technology optimized FIFO realizations with

different flit sizes

Figure 13 Bandwidth supported by the proposed technology

optimized FIFO realization with different flit sizes and on

different target devices.

technology dependent optimizations and compare it with the

inherent FIFO (FIFO 18) resource present in the FPGA device.

FIFO 18 can support a flit width up to 18-bits at most and the

2
1
0
9
.1

5
2 3
2
2
0
.6

0
8

4
7
1
9
.0

7
2

2
4

3
8

.5
7

6

4
0

4
4

.0
8

6
3

4
1

.6
6

4

2
3

4
9

.0
9

6

3
2

0
2

.5
6

2
8

5
8

.0
4

8

8bit 16 bit 32 bit

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

5200

5600

6000

6400

6800

7200

Bandwidth

B
an

d
w

id
th

 (
b

p
s)

Flit size

 xc5vlx50t

 xc6vlx195t

 xc7vx485t

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

42

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

flit width of 25 is not supported (N.S). As it can be seen that

there are a limited number of FIFO buffers in Xilinx FPGA

devices and their number varies as the target device and

package varies. The proposed realization helps in eliminating

the barrier of having a fixed number of buffers as shown in the

table 6. Figure 13 illustrates the bandwidth supported by the

proposed realization of the FIFO buffer. The bandwidth of the

NoC router is important in determining the latency through the

channels and area cost. In this paper, we assume we (ch) = W.

Then the bandwidth (BW) of the NoC channel is given by

BW=f_ch×W (1)

Where f_ch is the FIFO buffer operating frequency. Increasing

in W reduces the contention-free message latency. From figure

13. It can be seen that realizing FIFO with a flit size of 32-bits

provides a best bandwidth of 6341.7 bps.

8. CONCLUSIONS

This paper presents a novel idea of realizing circular FIFO

buffer using technology dependent optimizations. The results

presented in this work showed that technology dependent

optimizations have a direct impact on area, delay and power

dissipation of the design. FIFO buffers capable of storing NoC

traffic with various flit sizes and a fixed depth were

implemented and it was shown that for a depth of buffers, the

technology optimized realizations will always have an

improved performance in terms of various parameters with

reduction in the judicious trade-off between area, power and

throughput parameters. A key feature of the technology

dependent optimization is that the same optimization results in

the improvement of all the performance parameters (area and

power) and sometimes speed also depending upon the type of

circuit network and mapping strategy. This is generally not the

case with technology independent optimization where there is

always an application driven trade-off that drives the design

process. However, performance speed-up through technology

dependent optimization strongly relies on the amount of control

the designer has over the mapping process. In this paper, we

tackled this issue by modifying the coding strategy and writing

instantiation based codes to map the behavior of the optimized

Boolean networks. This has complicated the design entry and

although an efficient mapping is achieved, a complete control

over the mapping process still remains a bottleneck in

technology dependent optimizations. Another key contribution

of this paper is that it has eliminated the bottleneck of having a

limited number of FIFO buffer instantiations (limited number

of FIFO resources) on FPGA platform which is a major

bottleneck for NoC designers to adopt FPGA platforms. The

idea of this realization of the buffer will help NoC

communication architecture design community to implement

NoC based systems easily on the reconfigurable platforms

REFERENCES

[1] Marculescu, Radu, et al. "Outstanding research problems

in NoC design: system, microarchitecture, and circuit

perspectives." Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on 28.1 (2009):

3-21.

[2] B. Osterloh, H. Michalik, B. Fiethe, K.Kotarowski, “SoC

Wire: A Network-on-Chip Approach for Reconfigurable

System-on-Chip Designs in Space Applications,” in proc

of NASA/ESA Conference on Adaptive Hardware and

Systems, pp 51-56, June 2008.

[3] Abdelrasul Maher, R. Mohhamed, G. Victor., “Evaluation

of The Scalability of Round Robin Arbiters for NoC

Routers on FPGA,”7th International symposium on

Embedded Multicore/Manycore System-on-chip, pp61-

66,2013.

[4] Akram Ben Ahmaed, Abderazek Ben Abdallah, Kenichi,

Kuroda, “Architecture and Design of Efficient 3D

Network-on-Chip (3D NoC) for custom multicore SoC,” in

International confrence on Broadband, Wireless

Computing, communication and Application,

FIT,Fukuoka, Japan, Nov 2010.

[5] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High

speed switch scheduling for local area networks,” ACM

Trans. Compute. Syst., vol. 11, no. 4, pp. 319–352, Nov.

1993.

[6] So, Kut C., and E. Chin Ke-tsai. "Performance bounds on

multi server exponential tandem queues with finite buffers.

“European journal of operational research 63.3 (1992):

463-477.

[7] Buyukkoc, C., "An approximation method for feed forward

queueing networks with finite buffers a manufacturing

perspective," in Robotics and Automation. Proceedings.

1986 IEEE International Conference on, vol.3, no., pp.965-

972, Apr 1986.

[8] Kleinrock, Leonard. Theory, volume 1, Queueing systems.

Wiley-interscience, 1975.

[9] Jerger, Natalie Enright, and Li-ShiuanPeh. "On-chip

networks." Synthesis Lectures on Computer Architecture

4.1 (2009): 1-141.

[10] Serfozo, Richard. Introduction to stochastic networks. Vol.

44. Springer Science & Business Media, 2012.

[11] Perros, H.G.; Altiok, Tayfur, "Approximate analysis of

open networks of queues with blocking: Tandem

configurations," in Software Engineering, IEEE

Transactions on, vol.SE-12, no.3, pp.450-461, March 1986

[12] M. Karol and M. Hluchyj, “Queueing in high-performance

packet switching,” IEEE J. Select. Areas Commun., vol. 6,

pp. 1587–1597, Dec. 1988.

[13] N. McKeown, V. Anantharam, and J. Walrand, “Achieving

100% throughput in an input-queued switch,” in Proc.

IEEE INFOCOM ‘96, San Francisco, CA, pp. 296–302.

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

43

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

[14] Yuan-Ying Chang, Huang, Y.S.-C., Poremba, M.

Narayanan, V.Yuan, Xie King, C, “Title TS-Router: On

maximizing the Quality-of-Allocation in the On-Chip

Network,” in IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA2013), pp

390-399, Feb 2013.

[15] B. Phanibhushana, K. Ganeshpure, S. Kundu, “Task model

for on-chip communication infrastructure design for

multicore systems,” in proc of IEEE 29th International

Conference on Computer Design (ICCD), pp 360-365, oct

2011.

[16] J. Guo, J. Yao, LaxmiBhuyan, “An efficient packet

scheduling algorithm in network processors,” in

proceedings of 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, pp 807- 818,

march 2005.

[17] William John Dally, Brain Towels, Principles and

Practices of Interconnection Networks, Ist ed. Morgan

Kaufmann publications, 2003.

[18] N.Mckeown, “Scheduling algorithms for input buffered

cell switches,” Ph.D thesis, University of California at

Berkeley, 1995.

[19] K. Lee, Se-jee Lee, hoi-jun Yoo, “A Distributed Crossbar

Switch Scheduler for On-Chip Networks,” in Custom

Integrated Circuits Conference, 2003. Proceedings of the

IEEE, pp 671-674, Sept. 2003.

[20] Mello, Aline, et al. "Virtual channels in networks on chip:

implementation and evaluation on hermes

NoC."Proceedings of the 18th annual symposium on

Integrated circuits and system design. ACM, 2005.

[21] Gharan, M.O.; Khan, G.N., "A Novel Virtual Channel

Implementation Technique for Multi-core On-chip

Communication," in Applications for Multi-Core

Architectures (WAMCA), 2012 Third Workshop on, vol.,

no., pp.36-41, 24-25 Oct. 2012

[22] Peh, Li-Shiuan, and William J. Dally. "Flit-reservation

flow control." High-Performance Computer Architecture,

2000. HPCA-6. Proceedings. Sixth International

Symposium on. IEEE, 2000.

[23] P. Gupta, N. Mckeown, “Designing and implementing a

Fast Crossbar Scheduler,” in proc of Micro, IEEE, vol 19,

no 1, pp 20-28, Feb 1999

[24] Dally, W.J., "Virtual-channel flow control," in Parallel and

Distributed Systems, IEEE Transactions on, vol.3, no.2,

pp.194-205, Mar 1992

[25] Saastamoinen, Ilkka, MikkoAlho, and JariNurmi. "Buffer

implementation for Proteo network-on-chip." Circuits and

Systems, 2003. ISCAS'03. Proceedings of the 2003

International Symposium on. Vol. 2. IEEE, 2003.

[26] Pande, ParthaPratim, et al. "High-throughput switch-based

interconnect for future SoCs." System-on-Chip for Real-

Time Applications, 2003. Proceedings. The 3rd IEEE

International Workshop on. IEEE, 2003.

[27] Michelogiannakis, G.; Dally, W.J., "Elastic Buffer Flow

Control for On-Chip Networks," in Computers, IEEE

Transactions on, vol.62, no.2, pp.295-309, Feb. 2013

[28] Schelle, Graham, and Dirk Grunwald. "Onchip

interconnect exploration for multicore processors utilizing

FPGAs." 2nd Workshop on Architecture Research using

FPGA Platforms. 2006.

[29] Schelle, Graham, and Dirk Grunwald. "Exploring FPGA

network on chip implementations across various

application and network loads." Field Programmable Logic

and Applications, 2008. FPL 2008. International

Conference on. IEEE, 2008.

[30] Virtex-5 FPGA User Guide, UG190 (v5.4) March 16, 2012

[31] Virtex-6 FPGA Memory Resources, user Guide, UG363

(v1.8) February 5, 2014.

[32] R. Woods, J. McAllister, G. Lightbody and Y. Yi, “FPGA-

based Implementation of Signal Processing Systems,”

Wiley, 2008

[33] Peh, Li-Shiuan, and William J. Dally. "A delay model and

speculative architecture for pipelined routers." High-

Performance Computer Architecture, 2001. HPCA. The

Seventh International Symposium on. IEEE, 2001.

[34] Bertozzi, Davide, et al. "NoC synthesis flow for

customized domain specific multiprocessor systems-on-

chip." Parallel and Distributed Systems, IEEE Transactions

on 16.2 (2005): 113-129.

[35] Jantsch, Axel, and HannuTenhunen, eds. Networks on

chip. Vol. 396. Dordrecht: Kluwer Academic Publishers,

2003.

[36] Sunderam, Vaidy S. "PVM: A framework for parallel

distributed computing. "Concurrency: practice and

experience 2.4 (1990): 315-339.

[37] Saastamoinen, Ilkka, MikkoAlho, and JariNurmi. "Buffer

implementation for Proteo network-on-chip." Circuits and

Systems, 2003. ISCAS'03. Proceedings of the 2003

International Symposium on. Vol. 2. IEEE, 2003.

[38] Schelle, Graham, and Dirk Grunwald. "Exploring FPGA

network on chip implementations across various

application and network loads." Field Programmable Logic

and Applications, 2008. FPL 2008. International

Conference on. IEEE, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8830

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

44

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

[39] Oveis-Gharan, Masoud, and Gul N. Khan. "Statically

adaptive multi FIFO buffer architecture for network on

chip." Microprocessors and Microsystems39.1 (2015): 11-

26.

[40] Kogan, Kirill, et al. "FIFO queueing policies for packets

with heterogeneous processing." Design and analysis of

algorithms. Springer Berlin Heidelberg, 2012. 248-260.

[41] Huang, Po-Tsang, and Wei Hwang. "2-level FIFO

architecture design for switch fabrics in network-on-

chip." Circuits and Systems, 2006. ISCAS 2006.

Proceedings. 2006 IEEE International Symposium on.

IEEE, 2006.

[42] Chelcea, Tiberiu, and Steven M. Nowick. "A low-latency

FIFO for mixed-clock systems."wvlsi. IEEE, 2000.

[43] Khan, Mohammad Ayoub, and Abdul Quaiyum Ansari. "n-

Bit multiple read and write FIFO memory model for

network-on-chip."Information and Communication

Technologies (WICT), 2011 World Congress on. IEEE,

2011.

[44] Zhang, Yanjun, et al. "Asynchronous FIFO

implementation using FPGA."Electronics and

Optoelectronics (ICEOE), 2011 International Conference

on. Vol. 3. IEEE, 2011.

[45] Ogras, Umit Y., Jingcao Hu, and RaduMarculescu. "Key

research problems in NoC design: a holistic

perspective." Proceedings of the 3rd IEEE/ACM/IFIP

international conference on Hardware/software codesign

and system synthesis. ACM, 2005.

[46] Liu, Bing Qi, et al. "Research and Design of Asynchronous

FIFO Based on FPGA." Applied Mechanics and Materials.

Vol. 644. Trans Tech Publications, 2014.

[47] Peh, Li-Shiuan, and William J. Dally. "Flit-reservation

flow control." High-Performance Computer Architecture,

2000. HPCA-6. Proceedings. Sixth International

Symposium on. IEEE, 2000.

[48] Mello, Aline, et al. "Virtual channels in networks on chip:

implementation and evaluation on

hermesNoC."Proceedings of the 18th annual symposium

on Integrated circuits and system design. ACM, 2005.

[49] Gharan, M.O.; Khan, G.N., "A Novel Virtual Channel

Implementation Technique for Multi-core On-chip

Communication," in Applications for Multi-Core

Architectures (WAMCA), 2012 Third Workshop on, vol.,

no., pp.36-41, 24-25 Oct. 2012

[50] Saastamoinen, I.; Alho, M.; Nurmi, J., "Buffer

implementation for Proteo network-on-chip," in Circuits

and Systems, 2003. ISCAS '03. Proceedings of the 2003

International Symposium on, vol.2, no., pp.II-113-II-116

vol.2, 25-28 May 2003

[51] L. Benini, G.D. Micheli, Register designs for queuing

buffer, in: Networks on Chips: Technology and Tools,

Morgan Kaufmann Publishers, San Francisco, 2006, pp.

65–66.

[52] Y. Choi, T.M. Pinkston, Evaluation of queue designs for

true fully adaptive routers, J. Parall. Distrib. Comput. 64

(5) (2004) 606–616 (Orlando, FL).

[53] K. Donghyun, K. Kwanho, K. Joo-Young, L. Seung-Jin, Y.

Hoi-Jim, Solutions for real chip implementation issues of

NoC and their application to memory- centric NoC, in:

First International Symposium on Networks-on-Chip,

Princeton, New Jersey, May 2007, pp. 30–39.

[54] By H.J. Yoo, K. Lee, J.K. Kim, Network on chip based

SoC, in: Low-Power NoC for High-Performance SoC

Design, CRC Press, Boca Raton, 2008, pp. 142–145

Thearchitechture of the FIFO buffers is braoadly classified

aS serial and parallel [7–10].

[55] P. Forstner, FIFO Architecture, Functions, and

Applications, 1999. <http:// 927

www.ti.com/lit/an/scaa042a/scaa042a.pdf> (accessed

02.04.14).

[56] A. Ling, D. P. Singh, and S. D. Brown, “FPGA Technology

Mapping: A Study of Optimality,” IEEE Proceedings

Design Automation Conference, pp. 427-432, June 2005.

[57] J. H. Anderson and Q. Wang, “Area-Efficient FPGA Logic

Elements: Architecture and Synthesis,” 16th Asia and

South Pacific Design Automation Conference (ASP-

DAC), January 2011

[58] Xilinx, “Virtex-5 Family Overview,” DS100 (v 5.0) Feb.

6, 2009. www.xilinx.com.

[59] Xilinx, “Virtex-6 Libraries Guide for HDL Designs,”

UG623 (v 12.3) September 21, 2010. www.xilinx.com.

[60] Xilinx, “Spartan-6 Family Overview,” DS160 (v 2.0)

October 25, 2011. www.xilinx.com.

[61] Xilinx, “Virtex-6 FPGA Configurable Logic Block,”

UG364 (v1.2) February 3, 2012.

[62] L. Deng, K. Sobti, Y. Zhang and C. Chakarbarti, “Accurate Area, Time

and Power models for FPGA based Implementations,” Journal of Signal

Processing Systems, Springer, 2011.

[63] http://www.xilinx.com.

AUTHOR PROFILES

Liyaqat Nazir, is presently a Ph.D. scholar in National Institute

of Technology from India. He has received the B.Tech degree

in Electronics and Communications Engineering from the

Islamic University of Science and Technology, India, in 2011,

http://www.xilinx.com/

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 5 (3) pp. 1-2, JUN 2016

45

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 5, Issue 5
October 2016

He did his M.Tech degree in Communications and Information

Technology from National Institute of Technology Srinagar,

India in 2013. Currently he is a Ph.D. scholar in the department

of Computer Science and Engineering, NIT, Srinagar. His main

research interests include Network on chip, Digital VLSI

design, Mixed signal design. Reconfigurable architectures,

Architectural and technology dependent optimizations targeted

for FPGA platforms, etc. He has many publications in the

related field and is a Graduate student member of IEEE. He is

also a lifetime member of IETE.

In recent years, Network on chip has been actively

researched. Buffer management and buffering policies are the

elementary problem in the applications.

Roohie Naaz received B.E. (Hons) in Electrical Engineering

from University of Kashmir (India), M.E. in Computer Science

& Engineering from IISc Bangalore (India) in 1990 and Ph.D

from University of Kashmir, (India) in 2005. She is currently a

Professor in the department of Computer Science &

Engineering at NIT Srinagar, India. She is the co-author of

many scientific publications in international journals and

conferences. Her current research interests include

Reconfigurable computing, security and routing in wireless ad-

hoc networks, Sensor networks, High level computer

architecture design Network on chip, Digital VLSI design,

Mixed signal design., Reconfigurable architectures,

Architectural and technology dependent optimizations targeted

for FPGA platforms, etc. she has authored many research

articles in the related field and is a member of IEEE.

