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ABSTRACT 
 

The communication between processing elements is facing challenges due to power, area, and latency. Temporary storage of flits 

required during communication contributes to the major power consumption out of the total power consumed by the on-chip 

communication. The ideal NoC interconnect should match its performance cost to that with the network channels (buffers). The 

majority of current NoCs consume a high amount of power and area due to router buffers resources only. Removing buffers and 

virtual channels (VCs) significantly simplifies router design and reduces the power dissipation by a considerable amount but it 

can lead to the unpredictable delay for flit flow hence can substantially degrade the overall application performance. Therefore, 

the buffering scheme used in NoC based router plays a significant role in determining the performance of the NoC based mesh. 

Moreover, with rapid development in modern FPGAs from prototype designing to low and medium volume productions, it 

becomes imperative to consider architectural optimizations that are specific to FPGA fabric only. In this paper, we for the first 

time, with the use of technology dependent mapping strategies, we attempt to provide an optimized realization of a FIFO buffer 

designed that will help designers to adopt the efficient design of NoC microarchitecture routers. As no such work has been reported 

in the past we, therefore, compare our work with technology independent optimization reported. The prime contribution of this 

article is that the proposed realization will helps in elimination of the presence of fixed inherent FIFO buffer instantiations as the 

proposed realization gives us an idea to explore underlying FPGA fabric more efficiently for the realization of the FIFO than 

existing. The implementation targets Virtex-5, Virtex-6 and Virtex-7 FPGA device families from Xilinx.  

Keywords:  FPGA; Network-on-chip; Buffers; LUT; Reconfigurable computing. 

 

1.  INTRODUCTION 

 In the past few years, with the concept of Network-on-

Chip communication architecture, NoC has attracted a lot of 

attention by providing higher bandwidth and higher 

performance architectures for communication on the chip [1]. 

NoC can provide simple and scalable architectures if 

implemented on reconfigurable platforms [2]. Network on chip 

offers a new communication paradigm for system on chip (SoC) 

design [3]. Many processing elements of SoC are connected 

through Network-on-chip (NoC) routers which are arranged in 

some regular fashion such as Mesh, linear, torus, 2D, 3D type 

of topologies. To achieve high performance, the router should 

provide high bandwidth and low latency [4]. Although the 

performance of the NoC is normally seen by its throughput, 

which is defined by the network topology, router throughput 

and the traffic load on the network [5]. Therefore, the routers 

for a NoC must be designed to meet latency and throughput 

requirements amidst tight area and power constraints; this is a 

primary challenge designer are facing as many-core systems 

scale [6]. As router complexity increases with bandwidth 

demands, very simple routers (non-pipelined, wormhole, no 

VCs, limited buffering) can be built when high throughput is 

not needed, so require low area and power overhead [7], [8]. 

Challenges arise when the latency and throughput demands on 

on-chip networks become increasingly high [9]. A router’s 

architecture determines its critical path delay which affects per-

hop delay and overall network latency [10], [11]. Router 

microarchitecture also impacts network energy as it determines 

the circuit components in a router and their activity. The 

implementation of the routing, flow control and the actual 

router pipeline will affect the efficiency at which buffers and 

links are used and thus overall network throughput [1]. The area 

footprint of the router is clearly determined by the chosen router 

microarchitecture and underlying circuits. The critical path of 

the data path units in the router and the efficiency of control 

path units determine the router throughput [12], [13], [14], [15]. 

The communication between various processing elements 

through NoC routers require various control signal for efficient 

flit traversal in the communication fabric as illustrated in Fig 1 

[16]. Allocators are used to allocate virtual channels (VC) and 

to perform matching between groups of resources on each cycle 

[17], [18], [19] [20], [21]. Upon the flit arrival at the input port, 

contention for access to the fabric with cells at both input and 

output occurs. The router units exchange necessary handshake 

signals for data/flit transfer [7], [22]. A VC allocator thus 

performs allocation between the input flits and allows at most 

one flit contending at the input port to be destined to the selected 

output port [23]. In order to reduce the line of blocking, the rest 

of the contending flits are buffered into the virtual channels or 

buffers of the router so as to service them in coming appropriate 

clock cycles [24]. Buffers have simple logic and functionality 

as compared to the control logic, but in networks they consume 

most of the area resources [25]. However, the smaller the 

buffers are, the bigger is the possibility that some traffic is lost 

during data flit transfer. As the buffering demands storage 

capacity i.e registers or memory, it rapidly increases area costs. 

Hence, the right sizing of the buffers is very important. For 

successful buffer design, as exact traffic characteristics as 

possible are also needed [26]. However, elimination of input 

buffers eliminates the need of virtual channels (VCs) besides 

causing the reduction in area and power [27]. This increases the 
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Fig 1. Block diagram of NoC router communication. 

 

Fig 2. Block diagram of NoC router . 

chances for head-of-line blocking and causes reduction of 

performance in a network on chip based systems. On the other 

hand, NoC router architecture generally needs large amount of 

FPGA resources [28], [29] which is the barrier to widespread 

adoption of NoC routers on FPGA platforms. Moreover, the 

limited number of in build block buffer instantiations available 

with a given platform increases the barrier to next higher level 

[30], [31]. Traditional implementations of FIFO buffering 

policy have been platform independence oriented, where the 

design process consists of developing the necessary high level 

code for application level with some thought given to the 

underlying architecture to optimize the code quality [32], [33]. 

However, the functional diversity and complexity can be 

exploited to reveal hidden parallelism helping us to formally 

capture concurrencies both within control logic models of 

computation and among multiple control logic models of 

general logic design [34], [35]. The high-level concurrent tasks 

can be then mapped to the underlying communication and 

computation resources [36]. This has provided designers with 

sufficient impetus to look for platform oriented solutions where 

the underlying hardware can be utilized to develop a block level 

solution that best matches the functional diversity and 

complexity in buffering policies by developing the right level 

of parallelism. Accordingly, attempts have been made to 

develop custom and reconfigurable architectures for realizing  

Fig 3. Block diagram of proposed circular buffer. 

various buffering policies in application specific integrated 

circuits (ASIC) and field programmable gate arrays (FPGA) 

[37], [38], [39], [40], [41], [42], [43], [44]. 

In this paper, we, therefore, propose an efficient FPGA 

based realization of Circular buffer that will aid in the efficient 

implementation of NoC router microarchitectures on LUT 

based reconfigurable platforms. we have adopted technology 

dependent optimizations based approach in this paper. The 

approach is implemented successfully on Xilinx’s Virtex-5, 

Virtex-6 and Virtex-7 FPGA devices. As the performance 

speed-up achieved using technology dependent approach is a 

strong function of the nature of the target FPGA family. The 

optimizations presented in this work are targeted for FPGAs 

with 6-input LUTs. Therefore, for comparisons, we have 

considered only those implementations that use FPGAs with 6-

input LUTs. From experimentation; it is observed that FPGA-

based implementation with the technology dependent approach 

results not only the consumption of lesser amount of resources 

in designing the Buffering network but also gives the possibility 

of realizing more number of FIFO buffers efficiently thus 

overcoming the barrier of having limited number of inherent 

FIFO buffers or block RAMs of FPGA device. the new 

realization will help the NoC design community to explore of 

having NoC based systems with larger mesh order with better 

efficiency in terms of the specific application. 

The rest of the paper is organized as follows. Section II 

discusses the related work. Section III discusses general FIFO 

architecture. Section IV discusses the FIFO realization 

proposed in this paper. Section V discusses the preliminary 

terminology and the architectural details. Section VI discusses 

the technology dependent optimization of the multiply-adder 

unit. Synthesis, implementation and discussions are carried out 

in section VII. Conclusions are drawn in section VIII and 

references are listed at the end. 

2. RELATED WORK 

 Increased advances in the NoC based communication 

paradigm have attracted a lot of attention from industry and 

academia. Being a newer field, developing a newer a design 

methodology for NoC based communication presents novel and 

exciting challenges for the EDA community. With the large 

requirement of hardware resources some works had been 

reported in the ASIC domain, but to transfer the idea efficiently
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and entirely on reconfigurable platforms is yet a milestone to be 

achieved. NoC advances on reconfigurable platforms are 

limited by the availability of the limited amount of logic 

resources and memory on FPGAs [38]. Reconfigurable 

platforms fail to provide the amount of logic needed for the 

implementation of an efficient NoC system. Buffers are critical 

components of a NoC router and channel buffers at each router 

in the NoC have a serious impact on the overall area [45]. In 

NoC based architectures buffering policies play a key role in 

determining the throughput, latency, area utilization and energy 

consumption. In order to reduce the implementation overhead 

in NoC, Efforts are required to minimize the overall use of 

buffering resources. Hence, a considerable research effort has 

been devoted to buffering policies that can be adopted in a NoC 

router microarchitecture in the last few years. While these 

policies focus mainly on energy efficiency and latency, but they 

also increase the complexity of the router. Throughout, the key 

parameter of the NoC router needs to be maintained while 

reducing the complexity of router design. Sophisticated input-

buffered routers have been proposed for extending throughput, 

latency and clock speed. For instance, high-speed design of a 

FIFO has been proposed for extending steady data transmission 

between asynchronous clock domains in work [44]. The authors 

have exploited the instantiation of complete inbuilt RAM block 

available in the Xilinx based reconfigurable platforms. This has 

certainly provided an efficient FIFO buffering architecture as 

the in-build cores or instantiations are highly efficient. 

However, because of limited blocks available, they are unable 

to suffice the demands of a NoC based number. The authors in 

work [43] have presented a novel idea of realizing a FIFO 

buffer by presenting a custom cell-based design. The proposed 

design is aimed to provide a reliable flow of flits with reduced 

the latency and channel blocking overheads in a network on 

chip based system. The design is better than earlier reported, 

but the authors of the work have not given thought to the 

technology dependent optimizations in the work, as a result, the 

work inefficiently consumes large FPGA resources available 

with the reduction in the performance also. A similar work has 

been reported in [46]. The authors present a design method of 

asynchronous FIFO memory that primarily aims at buffer's 

capacity to prevent spillovers despite the fullness of data. The 

work is inefficient no thought is being given to the underlying 

architecture of the FPGA platform. Some other articles that 

report the work mainly aimed at throughput and latency 

optimization of router architecture, indirectly by buffer 

implementation, but logic resource utilization had not been 

considered as a performance parameter include the work in 

[47], the authors proposes a flit-reservation flow control, which 

sends control flits ahead of data flits, and timestamps these 

control flits so that buffers can be allocated just-in-time when 

data flits arrive. However, this still relies on input buffers. The 

improvement of the congestion of incoming packets can be also 

checked by the virtual channel (VC) scheme as presented in 

work [48], [49]. Virtual channel scheme multiplexes a physical 

channel using virtual channels (VCs), leading to the reduction 

in latency and increase in network throughput. The insertion of 

VCs also enables to implement policies for allocating the 

physical channel bandwidth, which enables support for quality 

of service (QoS) in applications [50]. All the above-mentioned 

approaches use technology independent optimizations to 

enhance the performance of the Network on chip router. In this 

paper, we take an alternate approach and propose realizations 

that are based on technology dependent optimizations. As 

already mentioned the performance speedup achieved using 

technology dependent approach is a strong function of the 

nature of the target FPGA family. The optimizations presented 

in this work are targeted for FPGAs with 6-input LUTs. 

Therefore, for comparisons, we have considered only those 

implementations that use FPGAs with 6-input LUTs. 

3. FIFO ARCHITECTURE 

An abstract FIFO provides a push and a pop interface and 

informs its connecting modules when it is full or empty. A push 

(write) is done when valid data are present at the input of the 

FIFO with FULL: signal low. At the read side, a pop (read) 

occurs when the upstream channel is ready to receive new data 

for the buffer with low empty signal, i.e., it has valid data to 

send. There are two types of FIFO designs and architectural 

schemes: serial and parallel [51], [52], [53], [54], [55]. The 

serial FIFO scheme such as shift registers the primitive FIFO 

generation that works by fall-through principle (or pipeline). 

However, with the advancement of architecture and circuit 

styling techniques the architectures of conventional FIFOs are 

constantly being improved. Currently, most of the FIFOs used 

are of parallel type, which are faster than serial FIFO [56]. This 

type of buffering scheme finds wide application in network on 

chip due to its relation to the fall through concept where the new 

arrival flit is stored (pushed) at the tail location of FIFO, and 

with each shift request, flits are shifted one location (slot) 

toward the head of queue. The process of pushing data into the 

asynchronous FIFO is done by continuously monitoring full 

and empty control signals from the FIFO buffer by the sender. 

The sender sets the request signal (push_req signal) after the 

data to he sent are ready. That data flits are on control basis 

continuously pushed into the consecutive buffer locations. The 

process of popping data from the asynchronous FIFO is equal 

to pushing process except that the data is supplied by the FIFO 

and obtained by the receiver. The control logic block contains 

control logic needed to control push pop operations on the 

actual memory block. 

4.  PROPOSED FIFO REALIZATION 

  We propose an efficient realization of FIFO buffer 

that will help in efficient implementation of NoC router 

microarchitectures. In our design FIFO designed as a circular 

array of identical cells RAM LUTs from SLICEM present in 

the FPGA fabric. The block level illustration of the proposed 

circular buffer is shown in Fig3. It mainly comprises of a pair 

of separate addressable controllers, each for writing (push) and 

pop operations. A separate full detector and an empty detector 

logic block, and control logic for the put operation and get 

operation. The full and empty detectors are required to observe 

the state of the FIFO and determine whether the FIFO is full or 

empty. The input and output behavior of the FIFO is controlled 

by the flow of two tokens, generated by a write address logic 

controller logic and a read address logic controller respectively: 

a put token is used to enqueue data items and a get token is used 

to dequeue data items. Once a data item is enqueued, it is moved 

only when it is dequeued. If the signal to put token generator is 

asserted, the FIFO enqueues one data item and rotates the put  
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(a)                                                                  (b)                                                    

Fig 4. Logic illustration of (a) ALC (b) TMD. 

  
Fig 5. Logic illustration of TDT block.    Fig 6. Block level illustration of DRB 

 
token to the left. If it is deasserted, the put token is stalled with 

no enqueue operation in the FIFO. Similarly, the get controller 

enables and disables the get operations. Tokens move counter 

clockwise through the array of LUT based RAM cells. The LUT 

RAM cell having the corresponding put token (tail of the queue) 

has permission to store the enqueued data item, and the cell 

having the corresponding get token (head of the queue) has the 

permission to dequeue its data to the neighboring connecting 

node. The read address logic controller and the write address 

logic controller logic is designed in such a way that the get 

token is never ahead of the put token. After the token has been 

consumed by the LUT-based RAM cell, it will be passed to its 

left neighbor at the beginning of the next clock cycle, after the 

respective operation is completed. The movement of tokens 

across the LUT RAM cells is controlled both by interface 

requests as well as the state of the FIFO (full or empty), which 

are combined into the global signals Write and Read. 

5. PRELIMINARY TERMINOLOGY AND 

ARCHITECTURAL DETAILS 

Logic synthesis FIFO buffer is concerned with realizing a 

desired functionality with the minimum possible cost. In the 

context of digital design of a buffering policy, the cost of a 

circuit is a measure of its speed, area, power or any combination 

of these. The block level illustration of the proposed realization 

of the FIFO shown in the Fig 3. The primary blocks required to 

design the FIFO are the address logic controllers (ALC), token 

distance tracking (TDT), token magnitude detection (TMD), 

control signal generation blocks and a distributed RAM block 

(DRB). Distributed RAM is crucial to many high-performance 

applications that require relatively small embedded RAM 

blocks, such as FIFOs or small register files. The address logic 

controllers are realized with the help of digital synchronous 

counter logic network. So two separate n-bit address logic 

controllers are required for separate write and read operations 

of the FIFO into 2n RAM block location of each LUT based 

RAM block. The separate use of address logic controller block 

is required for the separate address generation in respective 

ports. As we are targeting a ring FIFO buffer therefore a 

synchronous counter is required for the desired operation. The 

logic level diagram of an address logic controllers realized with 

help of fast carry4 chain present in the FPGA target device is 

shown in Fig4(a). The logic controller shown is capable of 

providing an address realization of FIFO with a depth order of 
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16 (24=16) with address bitsA0, A1, A2,A3. These address bits 

are used for physical address realization of the RAM blocks and 

are used by the token distance tracking block. The token 

distance tracking (TDT) block is realized with the help of a 

ripple carry subtraction block illustrated in Fig 5. The TDT for 

the FIFO is also realized with the help of fast carry4 chain logic 

present in the target reconfigurable platform. The TDT block 

takes inputs from token magnitude detection (TMD) block as 

illustrated in Figure 3. The logic network of a TMD is shown in 

Fig 4(b). TMD calculates the absolute distance between the 

tokens generated by ALC by providing a signal C_in_select 

input to the TDT block. TDT logic provides output to simple 

logic networks needed for both read and write ports and are 

called as the signal generation blocks. The signal generation 

blocks upon suitable receiving suitable inputs from TDT block 

generate Empty and Full signals that are needed for 

synchronization of communication ports during the buffering of 

data into the actual storage cells or distributive RAM block. The 

distributive RAM block has been realized as 16x1 dual-port 

RAM16X1D primitive instantiation requiring two 16x1 LUT 

RAMs present within a single SLICEM slice of the underlying 

fabric, as illustrated in Fig 6. Data is provided simultaneously 

to both LUT RAMs and controlled by address A[3:0], WE, and 

WCLK. The dual port RAM (DPR) has two access ports D and 

DPO as illustrated in Fig 6. For a general depth of n-bit FIFO 

realization, each 16 x 1-bit RAM is cascaded for n-occurrences 

for deeper and/or wider memory applications in the form of an 

array of memory to store the data, with a minimal timing 

penalty incurred through specialized logic resources. 

Distributed RAM writes synchronously and reads 

asynchronously by two separate sets of control signal, address 

and data busses. However, if required by the application, use 

the register associated with each LUT to implement a 

synchronous read function. For dual-port RAM16X1D, the first 

LUT out of two is required for the implementation of the A[3:0] 

port, i.e. the write and read address, and the second LUT is 

required to implement an independent read-only address i.e. 

DPRA[3:0] port. The port A address buss is an address bus 

takes its address values from write ALC, data bus output from 

the memory is DPO. Port D is the actual data buss that provides 

data to be stored in data memory. The control signal blocks act 

as an arbitration circuit used to determine which port has the 

right to write the memory, when to read and when ports are 

trying to update the data in the same address at the same time. 

Such kind of RAM realization is supported by various target 

devices such as Spartan-3 Virtex, Virtex-E, Spartan-II, Spartan-

IIE, Virtex-II, and Virtex-II Pro FPGAs. 

6. TECHNOLOGY DEPENDENT 

OPTIMIZATIONS 

Technology dependent optimizations are used to transform 

the initial Boolean network into a circuit netlist, efficiently 

compatible with the target logic elements. The transformation 

is carried out optimally in accordance with the logic distribution 

among the targeted elements so ensure minimum possible LUT 

depth and minimum resource utilization of the target device. 

The target element in the majority of FPGAs is k-input LUT 

[56], [57]. It is a block RAM function generator that can 

implement any Boolean function of k variables by directly 

storing its truth table. State-of-art FPGAs support 6-input, dual 

output LUTs with the capacity of implementing a single 6-input 

Boolean function or two 5-input Boolean functions that share 

inputs [58], [59], [60]. An efficient utilization of this circuit 

element could lead to implementation of higher logic densities 

resulting in a reduced fan-out of the logic nets and thus a 

minimal-depth circuit. 

Technology dependent optimization using LUTs is carried 

out in two steps. Firstly, the entire digital network is partitioned 

into suitable sub-networks or blocks. Individual nodes within 

each sub-block are then covered with suitable cones that maps 

a local Boolean function or a local truth table onto a separate 

LUT. Secondly a reverse process of the above step is carried, 

i.e. the entire network is then reconstructed by assembling the 

individually optimized sub-networks. Since the circular buffer 

is an assembly of ALC, TDT, TMD and DRB. An optimized 

realization of these individual sub networks could be adopted 

to realize an optimized realization of a circular buffering policy. 

A. Technology dependent optimization of ALC and 

TMD 

Figure 4 shows the Boolean network realization of ALC 

block and TMD block respectively. The network is traversed 

beginning at the primary inputs and proceeding toward the 

primary outputs. At each node in the network a best circuit is 

constructed that implements the sub-network extending from 

the node to the primary inputs. Next, we try to find an optimal 

covering for the nodes within each sub-network. A straight 

forward approach would be to cover each node with a separate 

cone and then map the local function implemented by each cone 

onto a separate LUT as shown in figure 4. The overall depth at 

network output is therefore, five respectively in each network. 

The LUT count is twenty-one and twenty respectively, the 

shaded blocks in the figure represents the LUTs consumed. 

Since we are targeting 6-input LUTs the implementation in 

figure 4 leads to severe under-utilization of the available 

resources in the considered network graphs. The number of 

required LUTs for realization and the overall depth may be 

further reduced with the help of tree minimization in the sub-

networks. A further saving in resources is possible by 

exploiting the reconvergent PI nodes in the carry sub-network. 

A node in the network with a fan-out greater than one that 

terminates at other nodes within the same network is a source 

of reconvergent path. Reconvergent paths can be realized 

within the LUT and the total number of inputs is reduced. This 

is shown in the circuit of Fig 7 and Fig 8. The circuit, shown in 

Fig 7 is an optimized realization of ALC and TMD using 6 input 

LUTs. The depth of the circuit is now reduced to one and the 

total LUT count is also reduced to three in the optimized 

realization of ALC and the LUT depth count in realizing TMD 

has been reduced to one and LUT utilization is reduced to two.  

In order to ensure that the optimization done prior to the design 

entry should not get over-ridden during the mapping and PAR 

phases. We have re-defined the coding strategy at the design 

entry phase. Instead of writing conventional inferential codes, 

we adopt an instantiation based coding strategy, wherein a 

target element is directly called and the desired functionality is 

assigned to it. This ensures a controlled mapping. 

The following instantiations were used to map TMD circuit 

illustrated in Fig 7.b. 
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equalblock2:LUT6_2 generic map ( INIT => X"9009000022b20000") port map ( AlessB(1),AeqB(1),bin(3),ain(3),bin(2), 

ain(2),'1','1'); 

equalblock1:LUT6_2 generic map ( INIT => X"9009000022b20000") port map ( AlessB(0),AeqB(0),bin(1),ain(1),bin(0), 

ain(0),'1','1'); 

CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => '0',CYINIT => '0', DI => AlessB, S => AeqB ); 

 

The following instantiations were used to map the ALC network. 

LUT2_L_inst0 : LUT2_L  generic map (INIT => X"2") port map (Sinrd(0), q1rd(0), sr(0)); 

LUT2_L_inst1 : LUT2_L  generic map (INIT => X"2") port map (Sinrd(1), q1rd(1), sr(1)); 

LUT2_L_inst2 : LUT2_L  generic map (INIT => X"2") port map (Sinrd(2), q1rd(2), sr(2)); 

LUT2_L_inst3 : LUT2_L  generic map (INIT => X"2") port map (Sinrd(3), q1rd(3), sr(3)); 

CARRY4_inst_read : CARRY4   port map (COrd,Ord,'0','1',DIrd,Sinrd); 

FDSE_inst0 : FDRE generic map (INIT => '0') port map (Q => q1rd(0),C => clk,CE => Rd_ce,R => S,D => Ord(0)); 

FDSE_inst1 : FDRE generic map (INIT => '0') port map (Q => q1rd(1),C => clk,CE => Rd_ce,R => s,D => Ord(1)); 

FDSE_inst2 : FDRE generic map (INIT => '0') port map (Q => q1rd(2),C => clk,CE => Rd_ce,R => S,D => Ord(2)); 

FDSE_inst3 : FDRE generic map (INIT => '0') port map (Q => q1rd(3),C => clk,CE => Rd_ce,R => S,D => Ord(3)); 

 

The following instantiations were used to map the TMD network. 

equalblock2:LUT6_2 generic map ( INIT => X"9009000022b20000") port map ( AlessB(1),AeqB(1),bin(3),ain(3),bin(2), 

ain(2),'1','1'); 

equalblock1:LUT6_2   generic map ( INIT => X"9009000022b20000") port map ( AlessB(0),AeqB(0),bin(1),ain(1), 

bin(0),ain(0),'1','1'); 

CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => '0',CYINIT => '0', DI => AlessB, S => AeqB ); 

 

The following instantiations were used to map the TDT block. 

LUT6_2_inst0 : LUT6_2   generic map ( INIT => X"ac00000099000000") port map ( p(0),g(0),bin(0),ain(0),cout1(1), 

'1','1','1');   

LUT6_2_inst1 : LUT6_2   generic map ( INIT => X"ac00000099000000") port map ( p(1),g(1),bin(1),ain(1),cout1(1), 

'1','1','1'); 

LUT6_2_inst2 : LUT6_2   generic map ( INIT => X"ac00000099000000") port map ( p(2),g(2),bin(2),ain(2),cout1(1), 

'1','1','1'); 

LUT6_2_inst3 : LUT6_2   generic map ( INIT => X"ac00000099000000") port map ( p(3),g(3),bin(3),ain(3),cout1(1), 

'1','1','1');  

CARRY4_inst_absolute_diffrence_circuit : CARRY4 port map (CO => cout2, O => diffrence, CI => '1',CYINIT => '1', DI 

=> g, S => p ); 

 

The Boolean network now has an LUT count of only three 

and a depth of only one LUT. The complete efficient realization 

is shown in the Fig 7. The Network is realized with help of three 

6-input dual output LUTs and two six input LUT with a total 

LUT depth of one respectively for ALC and TMD network.  

FPGAs have a well-defined design flow that starts with 

design entry and proceeds through phases like synthesis, 

translation, mapping and place and route (PAR).It was 

mentioned in the introductory section that the design cycle in 

FPGAs is simple due to the availability of the computer aided 

design (CAD) tools that handle the majority of the technology 

dependent steps like mapping and PAR. Technology dependent 

optimizations mainly focus on improving the mapping of 

Boolean networks onto target LUTs. However, with modern 

CAD tools, both technology mapping and PAR are automated 

and the optimization process is not transparent to the user [64]. 

Thus any optimization done prior to the design entry may get 

over-ridden during the mapping and PAR phases. To counter 

this issue we re-define the coding strategy at the design entry 

phase. Instead of writing conventional inferential codes, we 

adopt an instantiation based coding strategy, wherein a target 

element is directly called and the desired functionality is 

assigned to it. This ensures a controlled mapping. The following 

instantiations were used to map the various networks in the 

proposed FIFO buffer. 

B. Technology dependent optimization of RAM block 

In every topology of a NoC based communication network, 

there is an exchange of data flits between various IPs at a very 

rapid rate.  Intermediate storage or buffering is always required 

when data arrive at routing nodes at a high 
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(a)                                                                           (b) 

 

 
(c) 

Figure 7 (a) Optimized utilization of LUTs for realisation of Boolean network of (a) ALC (b) TMD (c) 

TDT using 6-input LUT 

 
(a)  

Figure 8 Dual-port distributed RAM block (16X1D) LUT realization for single data bit 

rate or in batches, but are processed slowly or irregularly. 

Modern FPGAs provides a variety of slice elements to support 

logic, arithmetic, and ROM functions. In addition to this, 

FPGAs is equipped with some slices to provide additional 

functions such as storing data using distributed RAM and 

shifting data with 32-bit registers. Slices that support these 

additional functions are called SLICEM. Such basic memory 

capabilities are embedded within the CLBs of various Xilinx 

FPGA families. Multiple LUTs in a SLICEM can be combined 

in various ways to store large amount of data. The function 

generators (LUTs) in SLICEMs can be implemented as an 

asynchronous RAM resource called a distributed RAM 

element. RAM elements are configurable within a SLICEM to 

implement various configurations of RAM [61]: Distributed 

RAM modules are synchronous (write) resources. A 

synchronous read can be implemented along with a storage 

element or a flip-flop in the same slice. The use of flip-flop for 

realizing the distributed RAM, improves the performance by 

decreasing the delay into the clock required to operate the flip-

flop. However, an additional clock latency is added. The 
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distributed elements share the same clock input. For a write 

operation, the Write Enable (WE) input, driven by either the CE 

or WE pin of a SLICEM, must be set High. The memory 

structure of FIFO in this work is realized with the help 16x1 

dual-port distributed RAM block (16X1D). The 16X1D 

primitive requires both 16x1 LUT RAMs within a single 

SLICEM slice, as shown in Fig 8. The first 16x1 LUT RAM, 

with output on single-port RAM (SPO), implements the 

read/write port controlled by address A[3:0] to read and write. 

The second LUT RAM implements the independent read-only 

port controlled by dual port read only address (DPRA), i.e. 

DPRA [3:0]. Data is presented simultaneously to both LUT 

RAMs, again controlled by address A[3:0], WE, and WCLK. 

The entire RAM block is realized by cascading the distributed 

RAM blocks n-time for desired n-bit flit width. 

 The following instantiations were used to map the circuit in Fig 

8. for bit-0 of the data flit. 

RAM32X1D_inst_bit_0: RAM32X1D generic map 

(INIT => X"00000000") -- Initial contents of RAM port map 

(DPO(0), SPO(0), WrAd(0), WrAd(1), WrAd(2), WrAd(3), 

WrAd(4), Din(0), Rdad(0), Rdad(1), Rdad(2), Rdad(3), 

Rdad(4),WCLK, wr_CE ); 

 

7. SYNTHESIS AND IMPLEMENTATION 

The implementation in this work targets FPGAs that have 

6-input LUTs as the basic logic element. In particular, we have 

considered devices from Virtex-5, Virtex-6 and Virtex-7 FPGA 

families from Xilinx. The implementation is carried for 

different word lengths of the data flits needed to be stored. The 

parameters considered are area, timing and power dissipation. 

The area is measured in terms of LUTs, flip-flops and slices 

utilized. Timing analysis may be static or dynamic. Static 

timing analysis gives information about the Minimum period 

and operating frequency of the design. Static timing analysis is 

done post synthesis and post PAR. However, the metrics 

obtained after synthesis are often not accurate enough due to the 

programmability of the FPGA which allows for interconnect 

delays to change significantly between iterations. Therefore, the 

metrics presented in this paper are post PAR. Dynamic timing 

analysis verifies the functionality of the design by applying test 

vectors and checking for correct output vectors. An important 

result from the dynamic timing analysis is the switching activity 

information captured in the value charge dump (VCD) file. 

Apart from post PAR timing analysis the functionality of the 

design is also verified by dumping the design on the Virtex-5, 

Virtex-7 platform. Power dissipation is given by the sum of 

static power dissipation and dynamic power dissipation. Static 

power dissipation is device specific and is mainly determined 

by the specific FPGA family. Dynamic power dissipation is 

related to the charging and discharging of capacitances along 

different logic nodes and interconnects. Dynamic power 

dissipation mainly consists of the logic power, clock power and 

signal power [62]. Logic power depends on the amount of on-

chip resources being utilized by the design. Clock power is 

proportional to the operating frequency. Signal power depends 

on the switching activity and the density of the interconnects. 

For simulation and metrics generation similar test benches have 

been used and are typically designed to represent the worst case 

scenario (in terms of switching activity) for data entering into 

the FIFO buffer. Design entry is done using VHDL. As 

mentioned earlier instantiation based coding strategy is used. 

The constraints relating to synthesis and implementation are 

duly provided and a complete timing closure is ensured. 

Synthesis and implementation is carried out in Xilinx ISE 12.1 

[63]. Power analysis is done using the Xpower analyzer tool. 

There has been no work regarding the implementation of 

FIFO buffering policies using the technology dependent 

optimizations. Since such optimizations are a strong function of 

the type and nature of the underlying fabric, we have considered 

some technology independent FIFO buffer realizations that 

utilize the same FPGA devices. The idea is to provide a 

comparative analysis of the performance speed up that is 

achievable using the technology dependent (TD) approaches. 

However, our initial comparisons focus on the performance 

improvement achieved over the buffer realizations based on 

programmable logic unit cells implemented in [43] targeted for 

Xilinx FPGAs. 

A. Area Analysis 

Table 2 provides a comparison of the different FPGA 

resources utilized by the realization of the circular FIFO 

buffering policy based on the technology optimized sub blocks. 

The depth of FIFO buffer is 16 bits and the flit order is varied 

as 23, 24, and 25. Target devices are xc5vlx50, xc6vlx195t and 

xc7vx485t from Virtex-5, Virtex-6 and Virtex-7. Further 

analysis is carried out by plotting the various resources utilized 

as a function of the flit with. The results are shown in Fig 10. 

The number of Flip flops instantiated from the slice for 

realizing ALC block remains fixed upto 25 bits this is illustrated 

in figure 10(b), further more increase in flit size demands more 

FPGA resources in terms of LUT’s and slices this increasing 

demand is illustrated in figure 10(c) and 10(d) respectively. 

Since the proposed FIFO buffer is realized with the help of 

SLICEM BRAM LUT’s, therefore in general for an n-bit flit 

size of FIFO it requires n-memories and n-dual port RAMs. 

This is illustrated in figure 10 (e),(f) respectively.   

Next we compare our implementation against FIFO buffer 

implementation presented in the [43]. The work presents a 

FIFO design using flip flop and memory cell design, proposed 

by the authors. The authors have considered the direct Xilinx 

ISE based realizations of the Buffer. Two sets of results have 

been reported giving details about the device utilization 

summary and timing parameters of the proposed design 

however, the power dissipation of the proposed design is not 

reported. The devices considered are Vertex-7 device. We 

implemented our realization with the same target device and 

same package. The performance parameters recorded PAR are 

mentioned in table 1 and table 3 and illustrated in figure 9. It is 

observed that the FIFO buffer based on the technology 

optimized mapping realization of the network on LUTs uses the 

underlying fabric efficiently hence relatively lesser FPGA 

resources are consumed. But the efficient realization of the 

underlying fabric puts a prominent critical path delay in the 

design thus lowering the clock frequency. This has resulted 

because the instantiation based coding strategy used can ensure 

constraints related to synthesis and implementation while as 

mapping constraints are taken care by Xilinx ISE itself. 

Sometimes the Boolean network may be complex to map, 

providing poor timing closure while optimizing other goal of 
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parameters of interest. Hence, as a result of the optimization the 

area, latency and power a tradeoff in the speed is observed. The 

results of the work [44] are also compared with the proposed 

realization. The authors have used BRAM Block configurable 

memory module that is generated by the EDK design tools 

based on the configuration of the BRAM interface controller IP. 

The resource utilization summary is not completely mentioned. 

However, the work has a poor clock speed as mentioned in table 

1. 

B. Timing Analysis 

Technology optimized structures are implemented with 

minimum possible depth; therefore, the critical path delays are 

quite low. Since clock frequency is also a strong function of the 

propagation and routing delays associated with the critical path, 

a minimum depth circuit also ensures higher operating 

frequencies. Table 3 provides a comparison of the critical path 

delay and maximum clock frequency for the FIFO buffer 

realization based on the technology optimized mapping and the 

one based on the memory cell based design. The data flit length 

is 8bits and the depth of the buffer is 16. Target devices are 

xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6 

and Virtex-7. Further analysis is carried out by plotting the 

maximum clock frequency as a function of data flit width and 

target devices. The results are shown in figure 11. We can 

observe that the clock speed decreases with the increase in flit 

size this is due to the increase in the size of TDT block and due 

to the increase in memory logic needed to make larger flit size 

FIFO buffers. As the BRAM LUT blocks used for this purpose 

need a write clock for push operations therefore increasing 

FIFO memory size affects the clock speed. More over the 

mapping constraints set by Xilinx ISE itself are not part of an 

optimization coding strategy hence this also impacts the timing 

closure while optimizing other parameters of interest thus 

affecting the clock speed of the FIFO buffer. 
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Figure 9 Resource utilization for technology optimized and memory cell based FIFO 

TABLE 1 RESOURCE UTILIZATION FOR TECHNOLOGY OPTIMIZED V/s REPORTED WORK. 

FIFO Buffer Design LUTs Flip-flops Slices BRAM Clock frequency (MHz) 

Technology dependent [this work] 28 8 8 8 366 

Logic cell unit based [43] 154 24 39 0 293 

RAMB_S8_S8 [44] N.R N.R N.R 8 100 

TABLE 2 RESOURCE UTILIZATION FOR DIFFERENT FIFO BUFFER REALIZATIONS WITH VARIOUS FLIT 

SIZES 

Device xc5vlx50t xc6vlx195t xc7vx485t 

Package ff1136 2ff784 - 

Word size 23 24 25 23 24 25 23 24 25 

Slice registers 8 8 8 8 8 8 8 8 8 

Flip-flops used as 8 8 8 8 8 8 8 8 8 

Slice LUT's 24 34 50 26 32 48 28 36 52 

Occupied slices 6 10 13 8 10 14 8 11 18 

Fully used LUT-FF pairs 8 8 8 8 8 8 8 8 8 

No. used as memory 8 16 32 8 16 32 8 16 32 

Dual port RAM 8 16 32 8 16 32 8 16 32 

TABLE 3 TIMING ANALYSES FOR TECHNOLOGY OPTIMIZED AND LOGIC CELL BASED FIFO 

FIFO Buffer Design Critical path (ns) Max. clock frequency (MHz) 

Technology dependent [this work] 6.715 293 

Logic cell unit based [43] 8.751 366 

RAMB_S8_S8 [44] N.A 100 
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TABLE 4 CRITICAL PATH DELAY AND MAXIMUM CLOCK FREQUENCY FOR DIFFERENT FLIT SIZES OF 

BUFFERS REALISED ON VARIOUS DEVICES 

Device xc5vlx50t xc6vlx195t xc7vx485t 

Max. clock frequency (MHz) 23-bit 263.644 304.822 293.637 

Max. clock frequency (MHz) 24-bit 201.288 252.755 200.16 

Max. clock frequency (MHz) 25-bit 147.471 198.177 89.314 

Critical path delay (ns) 23-bit 4.23 4.86 4.92 

Critical path delay (ns) 24-bit 4.91 5.038 5.055 

Critical path delay (ns) 25-bit 5.022 5.26 5.33 

TABLE 5 POWER DISSIPATION FOR TECHNOLOGY OPTIMIZED FIFO BUFFERS WITH VARIABLE FLIT SIZES 

FPGA 

Resource 

Power Dissipation (mW) 

xc5vlx50t xc6vlx195t xc7vx485t 

Flit size (bits) 23 24 25 23 24 25 23 24 25 

Clocks 1.03 1 0.9 1.43 1.21 1.15 1.64 1.26 1.21 

Logic 0.08 0.32 0.45 0.06 0.29 0.37 0.047 0.27 0.33 

Signals 0.74 0.8 1.09 0.7 0.77 1.01 0.55 0.74 0.595 

IOs 24.78 27.6 37.75 18.2 21.4 29.12 17.1 19.1 25.33 

Dynamic 26.63 29.72 40.19 20.39 23.67 31.65 19.337 21.37 27.465 

Quiescent 529.37 560.54 529.38 529.37 712.12 711.95 379.38 206.51 206.44 

Total 582.63 619.98 609.76 1.43 1.21 1.15 418.054 249.25 261.37 

TABLE 6 POSSIBLE NUMBER OF FIFO BUFFERS THAN CAN BE REALISED USING TECHNOLOGY OPTIMIZED 

MAPPING. 

FIFO Buffer FPGA Resource Buffering realization 

xc5vlx50t xc6vlx195t xc7vx485t 

Maximum Memory LUTs 

available 7680 16720 16720 

Flit size (bits) 23 24 25 23 24 25 23 24 25 

Proposed realization Number of Buffers possible 960 480 240 2090 1045 522 2090 1045 522 

FIFO18 (Xilinx based) Number of Buffers Present 60 60 N.S 344 344 N.S 1030 1030 N.S 

 

Tables 4 mentions the PAR values of the critical path delay 

recorded for the proposed FIFO with various flit sizes for the 

technology optimized realization. The devices considered are 

xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6 

and Virtex-7 respectively. The various Flit sizes taken are 8-bit, 

16-bit and 32-bits word length. The depth of the buffer is taken 

as 16. 

 C. Power Analysis 

Technology dependent optimization reduces the power 

dissipation in two ways. First, the high activity switching nodes 

within a network are hidden within the LUTs in the final circuit 

netlist. This reduces the overall switching activity associated 

with the logic nodes. Second, technology dependent 

optimization results in a minimal depth circuit with a high logic 

density. This reduces the length of interconnects. Since 

interconnects in FPGAs are reconfigurable switches, there is a 

further reduction in the switching activity and thus the power 

dissipated. The analysis is done for a constant supply voltage 

and maximum operating frequency in each case. Test benches 

were designed for worst-case switching activity and the buffer 

functionality was verified for more than data flits. The design 

node activity from the simulator database along with the power 

constraint file (PCF) was used for power analysis in the Xpower 

analyzer tool. Table 5 gives the detailed power dissipation for 

proposed FIFO structure generated using technology optimized 

mapping. The target device is Virtex-5, Virtex-6 and Virtex-7 

and the flit sizes taken are 8-bit, 16-bit and 32-bits word length.  

Since the power dissipation in the existing work is not reported 

therefore this paper shows no comparison of the power 

dissipation with the existing designs or reported work. 

Furthermore, the power dissipated in clocking resources varies 

with the clock frequency. Since technology optimized design 

operates at slightly higher frequency in general but operating 

frequency decreases with the increase in flit size as explained 

above, the power dissipated by clocking resources also 

decreases as illustrated in Figure 12. (a). From figure 12. (b) it 

can be seen the logic power increases as the flit size increases, 

this is due to the increase in the logic with increase in the flit 

size. As the number of inputs, outputs and the respective signals 

also increase with flit size, thus leading to the increased IO’s 

and signal power as illustrated in figure 12. (c), (d) respectively. 

Finally, growth of logic with the flit size leads to increased logic 

activity, thus increased switching activity, hence increased 

dynamic power dissipation as illustrated in 13. (e). In general, 

power dissipated by on-chip resources is lesser for technology-

optimized design because of the efficient utilization of the 

underlying resources. Finally, a reduction in switching activity 

due to hiding of nodes and reduction of interconnects results in 

lower power dissipation in the signals. Figure 12 gives the 

variation in power dissipation in different FPGA resources as 

the flit size for buffering varies. Table 6 gives the possibility of 

realizing efficient FIFO buffers based on technology dependent 

optimizations and compare it with the inherent FIFO (FIFO 18) 

resource present in the FPGA device. Table 6 gives the 

possibility of realizing efficient FIFO buffers based on  
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Figure 10 Resource utilization for technology optimized for different flit sizes.
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Figure 11 Timing analyses for technology optimized FIFO realizations with different flit sizes. 
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Figure 12 Variation in power dissipation in different FPGA 

resources for technology optimized FIFO realizations with 

different flit sizes 

Figure 13 Bandwidth supported by the proposed technology 

optimized FIFO realization with different flit sizes and on 

different target devices. 

 

 

technology dependent optimizations and compare it with the 
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flit width of 25 is not supported (N.S). As it can be seen that 

there are a limited number of FIFO buffers in Xilinx FPGA 

devices and their number varies as the target device and 

package varies. The proposed realization helps in eliminating 

the barrier of having a fixed number of buffers as shown in the 

table 6. Figure 13 illustrates the bandwidth supported by the 

proposed realization of the FIFO buffer. The bandwidth of the 

NoC router is important in determining the latency through the 

channels and area cost. In this paper, we assume we (ch) = W. 

Then the bandwidth (BW) of the NoC channel is given by  

BW=f_ch×W     (1) 

Where f_ch is the FIFO buffer operating frequency. Increasing 

in W reduces the contention-free message latency. From figure 

13. It can be seen that realizing FIFO with a flit size of 32-bits 

provides a best bandwidth of 6341.7 bps. 

8. CONCLUSIONS 

This paper presents a novel idea of realizing circular FIFO 

buffer using technology dependent optimizations. The results 

presented in this work showed that technology dependent 

optimizations have a direct impact on area, delay and power 

dissipation of the design. FIFO buffers capable of storing NoC 

traffic with various flit sizes and a fixed depth were 

implemented and it was shown that for a depth of buffers, the 

technology optimized realizations will always have an 

improved performance in terms of various parameters with 

reduction in the judicious trade-off between area, power and 

throughput parameters. A key feature of the technology 

dependent optimization is that the same optimization results in 

the improvement of all the performance parameters (area and 

power) and sometimes speed also depending upon the type of 

circuit network and mapping strategy. This is generally not the 

case with technology independent optimization where there is 

always an application driven trade-off that drives the design 

process. However, performance speed-up through technology 

dependent optimization strongly relies on the amount of control 

the designer has over the mapping process. In this paper, we 

tackled this issue by modifying the coding strategy and writing 

instantiation based codes to map the behavior of the optimized 

Boolean networks. This has complicated the design entry and 

although an efficient mapping is achieved, a complete control 

over the mapping process still remains a bottleneck in 

technology dependent optimizations. Another key contribution 

of this paper is that it has eliminated the bottleneck of having a 

limited number of FIFO buffer instantiations (limited number 

of FIFO resources) on FPGA platform which is a major 

bottleneck for NoC designers to adopt FPGA platforms. The 

idea of this realization of the buffer will help NoC 

communication architecture design community to implement 

NoC based systems easily on the reconfigurable platforms 
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