

©2012-13 International Journal of Information Technology and Electrical Engineering

 1

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

Scheduling in Multi-core Systems: Minimizing Average Waiting Time by

merging (Round-Robin with Shortest-Job-First Technique)

1
Ahmad Mohsin,

2
Muhammad Imran Rafique,

3
Sumbul Aziz Khan,

4
Qurratulain Munir

1
Department of Computer Science & Engineering, Air University Multan, Pakistan

2
Department of Computer Science & Engineering, Air University Multan, Pakistan

3
Department of Computer Science & Engineering, Air University Multan, Pakistan

4
Department of Computer Science & Engineering, Air University Multan, Pakistan

E-mail:

1
ahmadspm@gmail.com,

2
mailtomirc@yahoo.com,

3
sumbulkhan2419@yahoo.com,

4
anniemunir57@yahoo.com

ABSTRACT

Since the emergence of Multi-core processors, operating systems have transformed altogether; trying to meet the resource

capabilities and improve upon the overall performance of the systems. To date, many core processors have emerged,

revolutionizing the computation capabilities. There are many performance related issues with the operating systems; one of

them is proper and efficient scheduling of processes and threads which impacts heavily on overall Quality of the system. In

past, much work has been done in devising new scheduling algorithms for multi-core processors but little attention has

been given to merge classic scheduling algorithms for multi-core processor systems. In this paper, we shall focus how

Round Robin (RR) algorithm can work with Shortest Job First (SJF) algorithm and First-Come-First-Serve (FCFS) for

multi-core processor systems. We have tried to devise a new algorithm by using prioritization techniques for multi-core

processors. Observations are made on the basis of these results and are revealed at the end. By this technique, overall

waiting time can be reduced significantly which eventually leads to the better performance of the system.

Keywords: multi-core processors, uni-processor, scheduling,

FCFS, SJF, round robin (RR), throughput, waiting time

1. INTRODUCTION

In the current age of multi-processors, every operating

system is dreamed to be optimized to get maximum

throughput in minimum processing time and waiting time

for each process [1, 2]. Round Robin (RR) algorithm works

on assigning the CPU to every available process in turn so

that no process goes into starvation [3].

The CPU can be made more productive by reducing the

idle time of the processors and switching and assigning it to

any other process that is in waiting state. This idle time can

be minimized by scheduling all processes using Round

Robin (RR) such that all processes have equal access to the

CPU but each process is assigned a certain time (i.e. time

slice) to complete its execution. Previously, the Round

Robin algorithm is working with FCFS algorithm, that is,

the process arriving first is served or processed first by the

processor; but a slight contrast to FCFS, i.e. the process

arriving first is assigned higher priority and sent to the CPU

first but given only a particular time to execute (RR-

technique) after which it goes into waiting state and the

CPU is given to the next process and so on [3, 4]. This

context switching continues until all the available processes

are completed one by one.

 In the next section-2, we‘ll explain how the scheduling

operations are performed by a process scheduler, enabling

us to define a certain scheduling criteria in section-3. In

section-4, the drawbacks of Round Robin (RR) with First-

Come-First-Serve technique are discussed. Section-5

introduces our proposed idea of prioritizing the incoming

processes using Round Robin with Shortest-Job-First

technique. Section-6 shows our anticipated Priority

Algorithm and the experiments relating to RR-FCFS and the

RR-SJF using arbitrary values for Uni-processors and multi-

processors separately. Finally section-7 & section-8 gives

conclusion and the future work respectively related to the

proposed idea.

2. PROCESS SCHEDULER

The process scheduler is the pre-emptive component of

the operating system that is responsible for deciding

whether the currently running process should continue

running, move to ready or waiting queue and, which process

should be sent to processor for execution [5]. The process

scheduler selects an available process from a set of several

available processes and sends it to the CPU. For a

multiprocessor system, there may be more than one running

process simultaneously. In multi-core processor systems

mailto:ahmadspm@gmail.com
http://aa-mg6.mail.yahoo.com/yab-fe/mu/MainView?.src=neo&themeName=fresh&bn=6745&s=0&isFresh=1&bucketId=0&stab=1358686500483
mailto:sumbulkhan2419@yahoo.com
http://aa-mg6.mail.yahoo.com/yab-fe/mu/MainView?.src=neo&themeName=fresh&bn=6745&s=0&isFresh=1&bucketId=0&stab=1358686500483

©2012-13 International Journal of Information Technology and Electrical Engineering

 2

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

scheduling is complex as compared to uni-processors. If

there are more processes, the rest will have to wait until the

CPU is free and can be rescheduled.

The following four steps may occur during the

scheduler‗s decision making: [6]

 The current process that is running moves from

the running to the waiting state because of an I/O

request or some other kind of interrupt.

 The current process terminates.

 A timer interrupt causes the scheduler to run and

decide that a process has run for its allotted interval

of time and it is time to move it from

the running to the ready state.

 An I/O operation is complete for a process that

requested it and the process now moves from

the waiting to the ready state. The scheduler may

then decide to move this ready process into

the running state.

There are many algorithms available for process

scheduling, some of them discussed in this paper are:

 Round Robin (RR)

 First-Come, First-Served (FCFS)

 Shortest Job First (SJF)

3. THE SCHEDULING CRITERIA

Scheduling criteria is one of the most important factors

determining which CPU-Scheduling Algorithm is best to

use in a particular situation meeting certain properties.

There are many scheduling criteria suggested but following

is the mostly used one. [3]

Sr.

Criterion

Factor

Description

1 CPU

Utilization

Ideally 0- 100 %

In reality 40%

2 Throughput Maximum Amount of CPU- being

busy for executing processing.

3 Turnaround

Time

Total time from time of submission

to the time of completion of a

process.

Tr = Ts + Tw (Ts = Execution

time, Tw = Waiting Time)

4 Waiting Time

Amount of time Process spends in

waiting in Ready Queue

5 Response

Time

Measure of time from submission

of request to the first response

received. It is variable depending

upon environment.

Table-1: Scheduling criteria

3.1. DESIRABLE FACTORS EFFECTING

SCHEDULING CRITERIA

Some of the characteristics of the desirable factors

effecting scheduling criteria are:

Throughput Higher is desirable

Turnaround time lower is desirable

Response Time Lower is desirable

These factors are affected by following two secondary

criteria:

 CPU Utilization

 Waiting Time

These are multiple factors which are useful to

determine the performance of a scheduling algorithm. Here

in our case, we shall be focusing on Average Waiting Time,

as this factor is most important for processes / threads when

they are in ready queue waiting for their turn to be assigned

to the processor(s).

4. HOW ROUND ROBIN (RR) WORKS

WITH FIRST-COME-FIRST-SERVE

(FCFS)?

In FCFS algorithm, processes are prioritized and

dispatched to the processor according to their arrival time in

the ready queue, regardless of their size [7, 8]. So, if the

short jobs arrive after the large ones, then this short job has

to wait a long time to get its first response and may even go

into starvation if the larger process never ends. This

drawback is overcome by using Round Robin and FCFS

together as the algorithm for RR and FCFS are same except

for the presence of time quantum or time slice. Therefore,

RR which is preemption of processes based on a clock

(called time slice) is used as it is one of the oldest, simplest

and easiest scheduling algorithm. The time slice interrupts at

periodic intervals. When the interrupt occurs, the currently

running process is placed in the ready queue, and the next

ready job is selected on a FCFS basis.

5. ROUND ROBIN (RR) WITH SHORTEST-

JOB-FIRST (SJF)

According to the proposed idea, the Round Robin is

merged with Shortest Job First (SJF) instead of FCFS, i.e.

when the time slice assigned to a process end, the next

available SHORTEST sized process is selected for

execution. In this technique, the process having the shortest

CPU burst time will be assigned to the CPU first, i.e. the

available processes are arranged on the basis of their

required service time, the smallest process or job is assigned

with priority-1, the next available shortest process as

priority-2, and so on in Shortest job First (SJF) algorithm

©2012-13 International Journal of Information Technology and Electrical Engineering

 3

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

[9] and these prioritized processes execute using Round

Robin technique. Hence this technique minimizes average

waiting time and reduces response time for short processes.

For the sake of simplicity this paper works on processes

rather than threads.

6. EXPERIMENTS & RESULTS

6.1. Working on Uni-Processor Systems

To evaluate the performance of our proposed idea, we

have used some arbitrary values of five processes namely;

P1, P2, P3, P4 and P5 arriving at time 0 in the uni-processor

system. The table-2 shows the processes and their burst

time:

Process P1 P2 P3 P4 P5

Burst Time

(msec)

20 12 8 16 4

Table-2: Five processes along-with their burst time

The time quantum or Time slice assigned in this

example will be 4 msec.

a. RR with FCFS:

In normal Round Robin algorithm working with FCFS,

the processes given in Table-1 will have access to the CPU

according to their arrival priority (First-Come-First-Serve)

and the CPU will switch between all processes giving each

process a defined time slice of 4 milliseconds (Round-

Robin). The situation is shown in figure-1.

Figure-1: Gantt chart showing waiting time for each process

using RR-FCFS

The average waiting time according to Round-Robin

with FCFS algorithm will be calculated as follows:

P1 = 16 + 12 + 8 + 4 = 40

P2 = 4 + 16 + 12 = 32

P3 = 8 + 16 = 24

P4 = 12 + 16 + 8 = 36

P5 = 16

Therefore, the Average waiting time with RR-FCFS

will be:

40 + 32 + 24 + 36 + 16 / 5 = 29.6 msec.

b. RR with SJF

 According to our proposed idea of merging Round

Robin with SJF algorithm, the smallest process will have the

highest priority and will be assigned the CPU first; then the

next smallest process will be assigned the CPU and so on

i.e. the sequence of processes in table-1 will be P5, P3, P2,

P4, P1 for round-1. After giving response to all processes,

the scheduler will then selects the same processes sequence

as in round-1 as shown in figure-2. In general, the scheduler

performs SJF to arrange the processes and performs RR for

the entire processor queue.

 The Gantt chart of all processes discussed in the above

scenario is shown figure-2. All 5 processes are given

processor queue according to their burst time in round-1 and

in round-2 the same sequence is preserved as in round-1.

The time quantum or Time slice assigned in this example is

4 milliseconds for the processes shown in table-1.

Figure-2: Gantt chart showing waiting time for each process

using RR-SJF

The average waiting time according to Round-Robin

with SJF algorithm will be calculated as follows:

P1 = 16 + 12 + 8 + 4 = 40

P2 = 8 + 12 +8 = 28

P3 = 4 + 12 = 16

P4 = 12 + 12 + 12 + 4 = 40

P5 = 0

Now, the Average waiting time with RR-SJF will be:

40 + 28 + 16 + 40 + 0 / 5 = 24.8 msec.

This is obvious from both the results that the average

waiting time for RR-FCFS is 29.6 milliseconds and for RR-

SJF, it is 24.8 milliseconds which is a smaller value

according to our proposed idea. Comparison of both

techniques is shown in figure-3.

Figure-3: Graph showing the comparison between RR-FCFS

& RR-SJF for Uni-processor

RR-FCFS=29.6

RR-SJF=24.8

22

23

24

25

26

27

28

29

30

RR-FCFS (milli-
sec)

RR-SJF (milli-
sec)

Ti
m

e
in

 m
ill

i-
se

c(
s)

Comparison of RR-FCFS & RR-SJF in
Uni-processor

Avg. Waiting
Time

P

1

P

2

P

3

P

4

P

5

P

1

P

2

P

3

P

4

P

1

P

2

P

4

P

1

P

4

P

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

P

5

P

3

P

2

P

4

P

1

P

3

P

2

P

4

P

1

P

2

P

4

P

1

P

4

P

1

P

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

©2012-13 International Journal of Information Technology and Electrical Engineering

 4

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

6.2. Working on Multi-Processor Systems

If we are working on multi-processors then there is a

need of changing the technique and also a process can arrive

at any time and there is a need to define its position with

respect to its burst time in a queue in order to mimic SJF

algorithm. In this proposed idea, the Operating System first

waits for some time, say 1-second, and makes a batch of

those processes in queue Q1 (figure-4) --- say, maximum

process in a queue Q1 would be 5. This batch would be

assigned to another queue Q2 (figure-4) which will mark

priority no. according to their burst time, i.e. shortest

process will have the highest priority and these processes

will be placed in the ready queue PQ (figure-4) of those

processor who is running with less no. of processes and the

processor queue PQ will be executed in the same fashion as

discussed previously in working with uni-processor in part b

of this section. These are shifted to Q2 where they are given

priority no. and are finally assigned to processor‘s ready

queue PQ.

Figure-4: Multiple Queues with multi-core processors

6.3. Priority Algorithm:

A Priority algorithm can be designed to mark the

priority of each new process entering into the system. Every

time a new process arrives, its burst time is compared with

the processes already residing in the queue; if the new

process is found to have a smaller burst time than the older

ones then it is given the higher priority. The following

Priority Algorithm is given to mimic the whole scenario

discussed before. In this algorithm, there are two arrays one

of which is B, which is burst array that contains the burst

time of processes and the other is P, which is priority array

that contains priority numbers of corresponding burst time

of respective processes. Both the arrays have length 5. The

burst array is initially set to 0, 1, 2, 3, 4, which shows that

process P1 has priority 0 and so on. And after executing the

algorithm, the priority array i.e. P is updated with respect to

burst time in the burst array i.e. B in such a way that the

process which has smaller burst time is assigned with the

highest priority and so on. For example if we have five

processes in the burst array with burst time as 25, 20, 10, 15,

30, then its corresponding priority array will be 2, 3, 1, 0, 4.

The proposed Priority Algorithm is shown below:

After analysing the algorithm, it is obvious to see that

line no.6 depends upon the condition given in line no.5,

which compares the burst time of an arriving process with

the rest of the processes. If the burst time of an arriving

process is greater than the burst time of an already arrived

process being compared then line no.6 is not executed.

Also, the flowchart explaining the algorithm is given in

figure-5.

Figure-5: Flowchart for the Priority Algorithm

Now we look at the following two cases:

a. RR with FCFS:

Let suppose we are working with a system comprising

of two cores; processor-1 and processor-2, the processes P1

Priority (B, P) /* B is Burst Array showing processes

Burst time and P is Priority Array initialized with

(0, 1, 2, 3, 4) default priorities */

1. k ← 0

2. for i = 0,3

3. do k ← i+1

4. for j = 1 down to 0

5. do if (B[k] ≤ B[j])

6. then P[k] ← P[k] – 1; P[j] ← P[j] + 1

T

T

F

Start

k = 0; i = 0;

i≤3

b≤0

i = i+1;

End

k = i+1;

 j = 1;

T F

F

P[k] ← P[k] – 1;

P[j] ← P[j] + 1;

j = j -1

j ≥ 0

PQ

...

…

P
D

P
B

P
C

P
A

P
E

Q1

P
E

P
D

P
B

P
A

P
C

Q
2

1 5 4 2 3

P
E

P
D

P
B

P
A

P
C

©2012-13 International Journal of Information Technology and Electrical Engineering

 5

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

to P5 are assigned to PQ1 and P6 to P10 are assigned to

PQ2 (Figure-6).

PQ1 in Processor-1:

PQ2 in Processor-2:

Figure-6: Gantt chart showing waiting time for each processor

PQ1 & PQ2 using RR-FCFS in Multi-processors

For example, the burst time of 10 arriving processes in

the system is given below:

Process

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Burst

time

(msec)

4

8

6

10

2

8

12

8

6

2

Table-3: Processes arrival time

Processes P1 to P5 are assigned to processor-1‘s queue

PQ1 and processes P6 to P10 are assigned to processor-2‘s

queue PQ2. The time slice assigned is again 4 milliseconds.

Now, the average waiting time of PQ1 of processor-1

according to RR-FCFS technique for processes P1 to P5

will be:

P1 = 0

P2 = 4 + 10 = 14

P3 = 8 + 10 = 18

P4 = 12 + 8 = 20

P5 = 16

Average Waiting time = 0 + 14 + 18 + 20 + 16 / 5

 = 13.6msec.

Similarly, the average waiting time of each process in

PQ2 of processor-2 according to RR-FCFS technique for

processes P6 to P10 will be:

P6 = 14

P7 = 4 + 14 + 6 = 24

P8 = 8 + 14 = 22

P9 = 12 + 14 = 26

P10 = 16

Average Waiting time = 14 + 24 + 22 + 26 + 16 / 5

 = 20.4 msec.

b. RR with SJF

 Now the same arbitrary values used above to test RR-

FCFS are now considered to check RR-SJF according to our

Priority Algorithm. Again, processes P1 to P5 arrives in

queue Q1, say, in 1 second and are shifted to Q2 to mark

priority no. according to their burst time and are then

transferred to PQ1of processor-1 in such a way that the

process having the highest priority will be placed first in the

queue. After assigning processes P1 to P5 to PQ1, processes

P6 to P10 come in Q1 and are then shifted to Q2 to mark

priority no. and then finally moved to PQ2 of processor-2.

Remember that priority number is just to define the position

of processes in processor‘s queue and after placing

processes in PQ according to their priority no. the processor

queue PQ operates sequentially. Figure-7 shows the

complete scenario.

The average waiting time of each process in PQ1 of

processor-1 according to RR-SJF technique will be:

P1 = 2

P2 = 10+ 6 = 16

P3 = 6 + 8 = 14

P4 = 14 + 6 = 20

P5 = 0

Average Waiting time = 2 + 16 + 14 + 20 + 0 / 5

 =10.4msec.

PQ1 in Processor –1:

PQ2 in Processor –2:

Figure-7: Gantt chart showing waiting time for each processor

PQ1 &PQ2 using RR-SJF in Multi-processors

Similarly, the average waiting time of each process in

PQ2 of processor-2 according to RR-SJF technique will be:

P6 = 6 + 10 = 16

P7 = 14 + 10 = 24

P8 = 10 + 10 = 20

P9 = 2 + 12 = 14

P10 = 0

Average Waiting time = 16 + 24 + 20 + 14 + 0 / 5

 = 14.8msec.

P4

P1 P2 P3 P4 P5 P2 P3 P4 ...

0 4 8 12 16 18 22 24 28 30 ...

P6 P7 P8 P9 P10 P6 P7 P8 P9 P7 ...

0 4 8 12 16 18 22 26 30 32 35 ...

P5 P1 P3 P2 P4 P3 P2 P4 P4 …

0 2 6 10 14 18 20 24 28 30 ...

P10 P9 P6 P8 P7 P9 P6 P8 P7 P7 ...

0 2 6 10 14 18 20 24 28 32 36 ...

©2012-13 International Journal of Information Technology and Electrical Engineering

 6

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

After computation, it is obvious from the technique that

RR-SJF is giving a less waiting time in comparison with

RR-FCFS, which is given below:

Processors

RR-FCFS

RR-SJF

Processor-1

13.6 msec

10.4 msec

Processor-2

20.4 msec

14.8 msec

Table-4: Average Waiting Time (RR-FCFS & RR-SJF)

 The comparison of all these results obtained with RR-

FCFS and RR-SJF in multi-processors is shown with the

help of a graph in figure-8.

7. CONCLUSION

 The experimental results clearly show that the value of

average waiting time for our proposed Shortest-Job-First

has always a less value with RR algorithm as compared to

First-Come-First-Serve with RR in both cases of uni-

processor and multi-processors.

Figure-8: Graph showing the comparison between RR-FCFS

& RR-SJF for Multi-processors

 Thus, by using the proposed scheduling technique, the

average waiting time of the processes will be decreased. The

proposed system will contain a scheduling algorithm that

will prioritize processes residing in the memory. The setup

speed of processes can be slow because of operating priority

algorithm but after the setup the execution speed of

processes will increase because of having less average

waiting time. As we had discussed earlier that average

waiting has a greater impact on other scheduling criterion

factors these results support our new algorithm.

The proposed idea of using RR with SJF can be

implemented practically in future on all kind of systems

including Linux, Windows, etc. to reduce the average

waiting time of the processes and sometimes getting a

maximum throughput. And in multi-level queue systems, a

separate queue can also be maintained using this technique.

8. FUTURE RESEARCH WORK

In our work we have tried to give a new mechanism for

improving the overall performance of the operating system

by reducing average waiting time of the processes (s) in the

ready queue. We have done this both for uni and multi- core

processors. Work can further be extended by applying this

basic technique to threads in uni- processors as well multi-

core processors We have check our algorithm in C++

compiler for measuring average waiting time. Moreover, it

may further be extended to POSIX API for simulation and

results for multi-core processors with multithreading

evaluation.

REFERENCES

[1] I. Informatyka, P. Poznanska, Poznan and Poland,

―Scheduling Multiprocessor tasks- An overview‖,

European Journal of Operational Research 94, page

215—230, 1996.

[2] G. Levin, C. Sadowski, I. Pye, S. Brandt, ―A Simple

Model for Understanding Optimal Hard Real-Time

Multiprocessor Scheduling‖. Technical Report UCSC-

SOE-11-09, May 26, 2009.

[3] A. Silberschatz, P. B. Galvin and G. Gagne, 2009,

Operating Systems Concepts, 8
th
 ed., John Wiley &

Sons, Inc. 183-222 p.

[4] W. Stallings, Operating Systems – Internals and design

Principles, 7
th
 ed., Pearson Education, Inc., Prentice

Hall, 1 Lake Street, Upper Saddle River, New Jersey,

America.

[5] S. Siddha, V. Pallipadi, A. Mallick, ―Process

Scheduling Challenges in the Era of Multi-core

Processors‖, Intel Technology Journal, vol. 11, issue 4,

2007.

[6] Pk.org website. Available:

http://www.cs.rutgers.edu/~pxk/416/notes/07-

scheduling.html, 2010.

[7] C. Faisstnauer, D. Schmalstieg, W. Purgathofer,

―Priority Round-Robin Scheduling for Very large

RR-FCFS=13.6

RR-SJF=10.4

RR-FCFS=20.4

RR-SJF=14.8

0

5

10

15

20

25

RR-FCFS (milli-sec) RR-SJF (milli-sec)

Ti
m

e
in

 m
ill

i-
se

c(
s)

Comparison of RR-FCFS & RR-SJF in
Multi-processor

Processor-1

Processor-2

http://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
http://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html

©2012-13 International Journal of Information Technology and Electrical Engineering

 7

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue
4August 2013

Virtual Environments‖, Vienna University of

Technology, Austria, May 30, 2000.

[8] D. Nayak, S. K. Malla, D. Debadarshini, ―Improved

Round Robin Scheduling using Dynamic Time

Quantum‖, International Journal of Computer

Applications (0975 – 8887), vol. 38 - No. 5, January,

2012.

[9] H. S. Behera, B. K. Swain, ―A New Proposed

Precedence based Round Robin with Dynamic Time

Quantum (PRRDTQ) Scheduling Algorithm For Soft

Real Time Systems‖, International Journal of

Advanced Research in Computer Science and

Software Engineering, vol. 2, issue 6, June, 2012.

AUTHORS’ PROFILES

Ahmad Mohsin is a faculty Member of Department of

Computer Sciences and Engineering, Air University Multan

campus. He has done MS from FAST NUCES Lahore with

distinction and BS (Hons.) Degree in Computer Sciences

from BZU Multan. His Research interests are Software

Requirements Engineering, Software Design and Cloud-

based applications.

Muhammad Imran Rafique received BS degree in

Computer Science from Bahauddin Zakariya University,

Multan Pakistan, in 2007. He is MS-CS student of Air

University, Multan campus. Currently, he is Computer

Science teacher in Secondary School Education department.

His research interests are Operating system, Management

Information System.

Sumbul Aziz Khan received Masters Degree in computer

science from Bahauddin Zakariya University, Multan

Pakistan, in 2008. She is MS-CS student of Air University,

Multan campus. Currently, she is Computer Science teacher

in Secondary School Education department. Her research

interests are Data mining, Operating system and Software

Engineering.

Qurratulain Munir received Masters Degree in computer

science from Bahauddin Zakariya University, Multan

Pakistan, in 2008. She is MS-CS student of Air University,

Multan campus. Currently, she is Computer Science teacher

in Secondary School Education department. Her research

area is Software Engineering.

