

©2012-13 International Journal of Information Technology and Electrical Engineering

35

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

Using Open Source Software in Reuse-Intensive Software Development – A

Qualitative Study
1Fazal-e-Amin, 1Ahmad Kamil Mahmood, 2Aized Amin Soofi, 2M. Irfan Khan

1Computer and Information Sciences Department, Universiti Teknologi PETRONAS,

Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.
2College of Computer Science and Information Studies

Government College University, Faisalabad, Pakistan
E-mail: fazal.e.amin@gmail.com, kamilmh@petronas.com.my, aizedamin@yahoo.com, softchannel2000@hotmail.com

ABSTRACT

Open Source Software (OSS) is one of the emerging areas in software engineering. Reuse of OSS is employed in reuse-intensive

software development such as Component Based Software Development and Software Product Lines. OSS is gaining the

interest of the software development community due to its enormous benefits. The context of this study is the use of OSS in

reuse-intensive software development. The use of OSS in the systematic reuse of software, such as in Software Product Lines

(SPLs) is a new phenomenon. The aim of this study is to identify the different dimensions of this phenomenon. In this study, a

qualitative method, namely the interview, is used to acquire data. Interviews are conducted with seven respondents. The data is

analyzed using an adapted form of grounded theory. The results of this study include seven categories and their 39

subcategories / dimensions. The results of the study are compared with contemporary studies in this area to highlight the

contributions and to complement them. The findings of this study provide an in-depth view of the issues related to the use of

OSS in reuse-intensive software development. These findings will help the community to improve their practices and to initiate

steps to cope with the challenges.

Keywords: Open source software, reuse-intensive software development, interview, grounded theory

1. INTRODUCTION

 Open Source Software (OSS) is gaining the interest

of the software engineering community due to its numerous

benefits. These benefits fall into different dimensions. One

dimension is financial benefits, e.g. the reduction in

maintenance cost [1] and the escape from vendor lock-in [1,

2]. Another dimension is technical benefits including having a

large number of developers and testers [3, 4] and less

maintenance risk [5]. Other dimensions include user support

from the community [4], encouraging innovation [6, 7] and

increased collaboration [8]. As we can see, there are

multifaceted advantages to the use of OSS. The benefits may

relate to social aspects or to financial ones. The factors which

contribute to the popularity of OSS may also include increased

bandwidth, improved search facilities, and the existence of

code conjurers [9]. The growth of the Internet is also one of

the factors which has a huge impact on the way that software

is developed, marketed, and supported [10]. The use of OSS in

Component Based Software Engineering is already a norm in

the industry [11]. Recently, researchers have envisioned the

use of OSS in SPL development [12, 13]. So, OSS is entering

into a new arena. Currently available knowledge in this

research area is limited. This lack of knowledge is also

recognized in [14]: “there has been no systematic synthesis of

the OSS challenges reported in the literature.” Therefore, it is

obvious that there is a need to explore the use of OSS in reuse-

intensive software development, especially in Software

Product Lines (SPLs). In this study, not only the challenges,

but also other dimensions to using OSS are explored, such as

the current reuse practices, the desirable characteristics of OSS

and the use of OSS in SPLs.

2. RESEARCH METHODOLOGY

 This is an objective exploratory study. The study

comprises a literature search and interviews [15]. The

literature contains information regarding the use of OSS in

Component Based Software Development. Furthermore, the

use of OSS in SPLs has recently been proposed by

researchers. As regards the interviews, the respondents were

selected carefully on the basis of their knowledge and

expertise in this area. The analysis of the qualitative data

gathered through the interviews was performed using the

grounded theory approach [16]. The details on the analysis

and results are presented in the next sections. The results are

in the form of categories and sub-categories, which provide an

insight into the different dimensions of the categories. The

findings are a contribution towards the body of knowledge.

Details of the interviews conducted in this study are provided

in next section.

2.1 Interview
Qualitative evaluation and validation approaches seek

to collect data in the form of text and pictures. The interview

is one of the forms of qualitative data collection. In [17], a

detailed discussion about the use of participant observation

and interviewing is provided.

The interview is a means of collecting primary data;

it is a conversation between two persons, one of whom is a

researcher. Interviews can be used for data collection where

the nature of the study is exploratory. Interviews are helpful

when the data to be gathered is about a person’s knowledge,

preferences, attitude or values [18]. Interviews are useful in

situations when the logical order of the questions is not clear

or predetermined [18]. Interviews may help to gather

©2012-13 International Journal of Information Technology and Electrical Engineering

36

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

impressions and opinions about something [17]. Interviews

enable one to get personalized data, provide an opportunity to

probe, establish technical terms that can be understood by the

interviewee, and facilitate mutual understanding. The

interview provides an in-depth view for exploring the

perspective of informants [18]. Interviews enable the

researcher to understand the experiences of others. Several

types of interviews are reported in the literature [19]. In this

study the semi-structured type of interview is used.

Unstructured interviews are costly in terms of time

and resources as they require a lot of time to conduct the

interviews and to analyze the data. On the other hand,

structured interviews are efficient, requiring less time and

resources. However, structured interviews follow a set pattern

that does not allow for a detailed exploration of the issues.

Semi-structured interviews offer a compromise, making use of

both open-ended and specific questions. This combination

allows the researcher to explore the issues by collecting

expected information using specific questions, and unforeseen

information from open-ended questions. The semi-structured

type of interview is used in this study.

2.2 Interview Guide
An interview guide helps the researcher in organizing

the interview. The contents of an interview guide include the

list of open-ended questions to be asked during the interview

and notes to direct the interviewer in the desired direction.

Like field notes, an interview guide is again confidential, i.e. it

is not shown to the respondent. For novice interviewers it is

usually difficult to conduct the interview and write notes at the

same time. An audio recording of the interview provides a

solution to this problem. The permission to audio tape the

interview is essential; it is ethically binding on the researcher

to inform the respondent that the conversation is being taped.

The interview guide contains open ended questions,

or in other words the issues to be discussed. The conversation

starts with a brief introduction by the interviewer. In our case,

an introduction of the topics is not necessary because the

topics are already known to the researchers. In fact some of

the respondents are experts who are well known in the

research community. The respondents answered the questions

differently due to their varying knowledge and level of

experience. They used examples (citing names of software)

and referred to their talks with other researchers. The

transcribed interviews are not presented here, neither are the

names, the places or the events. The crux of the conversation

and results are presented in the results section.

2.3 Respondents' Profiles
The research issues investigated in this study are of a

specialized nature. Not everybody working in industry or

academia is able to answer these questions. The respondents

were chosen based on their expertise. It should be noted that

the respondents have up to date information regarding the

research in this area and industrial practices.

The interviews were audio recorded and transcribed

prior to performing the analysis. The first respondent is a

software engineering researcher and developer. He has

experience related to human computer interaction application

development.

The second respondent is a researcher having a

doctorate degree in software engineering in the area of

software product lines. He is an author of many publications,

some of which are book chapters. His publications include

those specifically targeting software product lines and related

issues.

The third respondent is an expert in software reuse

research, and has been authoring research papers on software

reuse since the 1980’s. He actively participates in research

activities and is currently the editor of a publication in

software engineering published by a prestigious body. He is

currently serving as the principle software architect in a well

known organization.

The fourth respondent started his career as a software

engineer and had been promoted to software project manager

during his career. He has managed several projects in the

domains of accounts, student information service, examination

systems and automation of small industries and NGOs.

The fifth respondent has worked in the domains of

micro finance, accounts, medical laboratories, visa system,

and billing.

The sixth respondent is working in a multinational

software development company. He has experience of

working in the education and health sectors. Currently, he is

serving as software quality assurance engineer.

The seventh respondent is also associated with the

software industry, working in a well reputed and nationally

certified software company. He has been involved in

developing software related to the project management

domain.

The profiles of the respondents are diverse, which influenced

the design of the interview guide and meant that not all of the

questions were posed to all of the respondents. Table 1

summarizes the profiles of the respondents. Different means

were used for conducting the interviews due to the location of

the respondents. These are shown in Table 2.

2.4 Qualitative Analysis Coding Process
The coding process of grounded theory is used for the

analysis part of this study. Following the grounded theory

approach, the coding process starts with open coding [16]. It is

the first analytical step that ‘opens up’ the transcribed

interview. The concepts are identified and names are given to

them. The open coding process results in a list of codes. In

addition a word cloud is generated. This step is taken to make

sure that none of the recurring words are missed. After the

analysis of all the transcriptions, we have all of the concepts.

Similar ones are grouped into categories. The categories are

named such that they provide meaningful insight into them.

After the identification of categories, the properties and

dimensions are developed by answering the ‘when’, ‘where’,

‘why’, and ‘how’ questions about the categories. The main

categories are divided into subcategories according to the

different properties and dimensions of the main categories.

The categories and respective sub-categories are

linked during the axial coding process [16]. Axial coding is

the process of reconnecting the data. The linking of categories

and subcategories provides more information and dimensions

of the phenomenon. The category, itself, is a phenomenon; on

the other hand, a sub category is not a phenomenon by itself,

but it answers questions about a phenomenon.

©2012-13 International Journal of Information Technology and Electrical Engineering

37

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

Selective coding [16] is the process of integrating and refining

the categories which are identified in the axial coding process.

During selective coding, the researcher reaches a point where

no new property, relationship or dimension emerges. This

point is termed theoretical saturation [16]. A pictorial

depiction of the coding process is presented in Figure 1. The

qualitative data was analysed using the ‘atlas.ti’ tool [20].

 Figure 1 Coding process

Table 1 Respondents’ profiles

Respondent

ID

Experience Experience

Type

Current

Affiliation

Rsp-A 5 years Academic,

Software

Industry

Academia

Rsp-B 10 years Academic,

Software

Industry

Industry

Rsp-C 22 years Academic,

Software

Industry

Industry

Rsp-D 8 years Academic,

Software

Industry

Academia

Rsp-E 10 years Academic,

Software

Industry

Academia

Rsp-F 3 years Software

Industry

Industry

Rsp-G 4 years Software

Industry

Industry

Table 2 Means used to conduct interviews

Means

used

Skype Face to

face

Telephone Total

Number of

Interviews

3 3 1 7

2.5 Word Cloud
A world cloud is a technique used to represent the

frequencies of words in textual data. On the World Wide Web,

word clouds are also referred to as tag clouds. Word clouds

are used to depict the relative importance, frequency, and

popularity of a word [21]. In this research, a word cloud is

used in addition to ‘open coding’ to make sure that none of the

recurring words are missed. The interview transcripts contain

6,483 words. A word cloud of these words is generated by an

online word cloud service (www.tagxedo.com), and is shown

in Figure 2. The cloud includes the 300 most frequently

recurring words in the transcripts. The word cloud helped to

ensure that the concepts related to these words are included in

the code list.

Figure 2 Word cloud generated from interview transcripts

3. RESULTS
The findings of the interviews and literature search are

presented in this section. These findings emerged into seven

categories. The names and descriptions of these categories are

provided in Table 3.

http://www.tagxedo.com/

©2012-13 International Journal of Information Technology and Electrical Engineering

38

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

Table 3 Categories and their descriptions

Category

ID

Category Name Description

Cat-1 Challenges of

OSS

These challenges are wide-ranging: the customer’s viewpoint; the end user’s

viewpoint; commercial and secure application development issues.

Cat-2 Current reuse

practices

Knowledge about current reuse practices as employed in industry are combined in

this category. This knowledge is based on the experience of the respondents.

Cat-3 Using OSS in

SPL

The views of the respondents on the use of open source software in product lines

are put together in this category.

Cat-4 Role of OSS in

promoting reuse

This category is based on the role of OSS in the promotion of reuse, i.e. why OSS is

influencing reuse intense software development.

Cat-5 Factors affecting

reusability

The factors of reusability are assembled under this category.

Cat-6 Desirable

characteristics of

OSS

The desirable characteristics of OSS, identified during the study, are presented in

this category.

Cat-7 Suggestions The suggestions provided by the respondents are presented in this category.

Table 4 Sub categories of ‘Challenges of OSS’

Cat-1 Challenges of OSS

Sub

Category

ID

Sub Category

Name

Representative Quote

SC-1-1 Finding OSS “Finding an OSS component is one of the challenges.”

SC-1-2 Evaluating OSS “If I find a required OSS component then its evaluation is a challenge.”

SC-1-3 Lack of

documentation

“….without proper information it is difficult to understand it.”

“If there is no proper documentation then other cannot understand the software

neither can change nor modify it.”

“The challenge in the context of the open source is analyzing, usually OS comes

along with source code without many documentation. So, it is very difficult to

analyze without documentation.”

SC-1-4 Reluctance for

developers to

make their

software OSS

“The managers and owners of the company want to develop such type of product

that they have They don’t want to contribute to the open source because they

want to run their software house ...”

“they are willing to use the OS but not to contribute to the OS because of their

limitation and because of the market competition”

“They don’t want to contribute to the open source because they want to run their

software house.”

©2012-13 International Journal of Information Technology and Electrical Engineering

39

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

Table 5 Sub categories of ‘Challenges of OSS’ (cont.)

Cat-1 Challenges of OSS (cont.)

Sub

Category

ID

Sub Category Name Representative Quote

SC-1-5 Lack of information about

intellectual property rights

/copyright

“The developers have lack of information about the intellectual

property rights in OSS, so they are afraid to share code.”

“Lineage of the software ensuring that no intellectual property so

that is the biggest hesitation.”

SC-1-6 Lack of adherence to coding

convention /standard

“There should be some specific rules, common rules for each for

the whole developer community or those contributing to the

OSS.”

“If some immature developer is developing the software defiantly

the code would be different from the professional developer.”

SC-1-7 Security “Any secure system which included OS but still there could be

certain measures if the OSS. They did a scan on the source code

rather than they incorporated as binary and they could do the

necessary analysis to know that the OSS does not have any

malicious code, entered in the software.”

SC-1-8 Improper reviewing /comments “I have seen some customers/users of OSS review but the main

problem is there are no rules for writing a review, every reviewer

is writing the review in their own context in their own way.”

SC-1-9 Fear of losing market share “If they develop a tool or software and they contribute of float it

as OSS there are chances that they can’t further work/earn.”

3.1 Challenges of OSS
In this study, the challenges of OSS have been

identified through a qualitative method. In this section these

are presented, and categorized on the basis of the opinions of

the respondents. These challenges fall into different

dimensions. The list of challenges (sub categories) and their

corresponding representative quotes are presented in Tables 4

and 5.

These challenges include finding and evaluating

OSS, the lack of documentation, and the developers’

reluctance to make their software OSS. Another challenge is

that developers do not have appropriate information about

intellectual property rights / copyright. A further challenge is

the lack of adherence to coding standards. The security of OSS

is also one of the major challenges. In relation to the challenge

of finding OSS, improper reviewing and comments is one of

the issues that needs attention. At the organizational level

there is a fear of losing market share, which poses a challenge

for the OSS community, as it deters developers from making

their software open source.

A study [14] has also discussed the challenges of

OSS. The authors made an argument that “there has been no

systematic synthesis of the OSS challenges reported in the

literature”. However, their study was based on a literature

survey. In the case of this study, the findings are based on

interviews with the experts, researchers and practitioners

together with a influence of what the literature says.

The common findings of this study and [14] are the

challenges of finding and evaluating components, poor

documentation, and the legal aspects such as copyright and

intellectual property rights. The findings presented in this

study are based on the viewpoint of users of OSS components,

i.e. the software engineers. In this regard, the prominent

findings are the issues of security, fear of losing market share

(at the organizational level) and fear of losing one’s job (at the

individual software engineer’s level). In a recent focus group

study it was reported that security and documentation are

among the most important technical factors [22]. These factors

should be taken into account when selecting an OSS

component.

3.1.1 SC-1-1 Finding OSS
The very first challenge in OSS is searching for it.

Searching facilities are improving with the emergence of new

search engines. Furthermore, enormous contributions are

being made by numerous software engineers. The

availability/accessibility of OSS has improved but it is still a

challenge to find specific OSS. One of the reasons is that

different cataloguing standards are employed by search

engines. This lack of a standard makes it difficult for a new

user (i.e. a software engineer) to search for a component using

different search engines.

3.1.2 SC-1-2 Evaluating OSS
The evaluation of the OSS is another challenge. For

example, in the first step (Finding OSS) when a required

component is found, then the decision whether to use it or not

is related to the evaluation of the OSS. The practices to

evaluate OSS differ in different organizations. In small

organizations the evaluation of OSS prior to using it is at the

discretion of the software engineer. In such environments this

evaluation depends on the knowledge and expertise of the

software engineer.

3.1.3 SC-1-3 Lack of Documentation

Lack of documentation is related to the

understandability of software. Lack of documentation affects

the understandability/analysis of the software. So, without

©2012-13 International Journal of Information Technology and Electrical Engineering

40

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

having appropriate documentation it is difficult for software

engineers to use it. One of the reasons for this issue is that a

large number of developers contribute to many OSS

components, and this complicates the provision of

documentation.

The respondents consider documentation as the most

important quality of OSS. The quality of documentation

reflects the quality of the software. Another aspect of

documentation is that it provides a record of the changes made

to the OSS, i.e. it gives its history.

3.1.4 SC-1-4 Reluctance for Developers to Make

Their Software OSS

In industry, managers encourage open source based

development. However, sometimes it is a one way interaction,

meaning that open source is used but is not contributed to. The

owners/managers of software houses want to develop software

using open source components to save time and money,

however, they want to capture market share and that is why

they force software engineers not to share code. Sometimes

software engineers (developers) want to contribute to the open

source community, but they are constrained by their owners.

In such a situation, software engineers are forced to have a one

way interaction with OSS and are unable to contribute to OSS,

and have to keep their innovations to themselves. Fear of

losing their job is also associated with the reluctance of

software engineers. They perceive OSS contribution as a

threat to their job.

3.1.5 SC-1-5 Lack of Information about

Intellectual Property Rights/Copyright

Software developers are not fully conversant with the

intellectual property rights and licensing information of open

source software. There are issues with legacy code and the

‘lineage’ of software. As an example, a software engineer

might work for an organization and then leave that

organization. The software engineer might retain the

application code. The individual may join another

organization and start using the code or he/she may make it

available as OSS.

3.1.6 SC-1-6 Lack of Adherence to Coding

Convention/Standard

There is a lack of adherence to coding conventions.

This reduces the understandability of the code. The level of

expertise of the programmer and type of experience that they

have had also plays an important role. The respondents

suggested that OSS contributors should follow coding

conventions. A check should be undertaken of the code, and

only if it meets the standard should it be included in an open

source portal. Without this check, the code’s worth is

questionable. Instead of spending large amounts of time

understanding others code, software engineers would prefer to

write their own.

3.1.7 SC-1-7 Security

There is a security concern when using OSS in

critical and highly secure application domains, such as the

defence, government and financial sectors. In such situations

there should be mechanisms for code scanning to ensure that

the code is clean, meaning that there is nothing malicious in

the code.

The issue of security is of great importance. In a

recent focus group study [22], the security of components has

been identified as an important technical factor that influences

the selection of components. Currently, software engineering

researchers are working on empirical studies on open source

and closed source software, see [23] for example. This study

concludes that there is no significant difference in both open

and closed source software development in terms of security.

3.1.8 SC-1-8 Improper Reviewing/Comments

Reviewer/user comments about OSS play an

important role for the potential user of OSS. One can learn

about the software prior to downloading and using it. There is

a huge amount of code (software) available over the Internet.

Users have written comments about some of it. However, the

issue is that there is no standard for reviewing code and

writing comments about it. The person who writes a comment

shares a personal experience with a particular piece of

software. Sometimes, the context of its use is not clear, which

raises questions in the reader’s mind. It is suggested by the

respondents that there should be standards for writing

comments about software so that potential OSS users can

easily extract the required information. The challenge of

improper reviewing and comments can be related to the

challenge of several descriptions of the same document, which

is identified in [24].

3.1.9 SC-1-9 Fear of Losing Market Share

This issue is more relevant to product line and

domain based software development, where companies target

a specific domain and group of potential customers. In such

situations the software organizations may use OSS but do not

want to contribute software to an OSS repository because they

want to keep their innovations to themselves. In this way they

sustain themselves in a particular domain. There is a fear

associated with sharing - if they share code they will risk

losing their position in the market.

3.2 Current Reuse Practices

The current reuse practices are identified in this

study. The findings which fall under this category are related

to the knowledge about current reuse practices as employed in

industry. This knowledge is based on the experience of the

respondents. The list of sub categories is presented in

Table Table 6, along with their corresponding

representative quotes. The current reuse practices include

knowledge reuse, looking at the demonstration of software

and the initialization of a product.

In [25] and [26], it is stated that OSS developers

reuse existing code in three forms. These three forms include

reuse of components, single lines of code, or algorithms /

methods. In this study, it is identified that another form of

reuse is the translation of logic from one programming

language to another. There is the situation where a developer

searches for a specific code in a specific language but she/he

can only find the functionality in some other language. Then

©2012-13 International Journal of Information Technology and Electrical Engineering

41

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

she/he tries to translate it in the desired language. In other

words, creates a replica of the program in the other language.

Demonstration versions of OSS are used to assess the effort

required to modify code or the number of modifications to be

made. Furthermore, the modules where the changes are

required can be easily identified by using a demonstration

version.

3.2.1 SC-2-1 Knowledge Reuse

There is a form of reuse in which knowledge is

reused. Imagine a situation where a software engineer is

searching for a component written in one language but can

only find it written in another language. The software engineer

can reuse the knowledge inherent in the logic but rewrite the

code. This form of reuse is helpful where the bulk of the logic

remains the same and the objectives of reuse are achieved with

some changes / adaptation. A demonstration version of

software is also related to knowledge reuse, as explained in

the next section.

3.2.2 SC-2-2 Demo

Much OSS comes with a demonstration version; this

is very helpful for understanding the software. The potential

user of OSS can base his/her decision on whether or not to use

the component on the success of using the demonstration

version. In other cases, the software engineer wishes to use a

component following some modifications. A demonstration

aids the software engineer in thinking how best to make the

modifications. Software engineers can sometimes gain a

better idea of the functionality of a part through using a

demonstration rather than studying a large amount of code. In

this way target areas of the program requiring modification

can sometimes be more easily identified.

3.2.3 SC-2-3 Not Started From Scratch

There is an opinion that starting a product ‘from

scratch’ is impractical. Software engineers start developing

with having some components at hand. It saves time and other

resources. At a higher level the same goes for software

product lines. Product lines are started after having prior

knowledge and an awareness of their applications in the

domain. Reuse as an aid to getting started can facilitate a

competitive advantage, allowing a new software product to be

developed in a short period of time.

The association of an organization with a specific

domain helps to develop trust in its new products. The

customer prefers software products from companies that are

already established in a specific domain.

Table 6 Sub categories of ‘Current reuse practices’

Cat-2 Current reuse practices

Sub Category ID Sub Category Name Representative Quote

SC-2-1 Knowledge reuse “We can just take an idea and we can reuse the idea.”

SC-2-2 Demo “Demo could be helpful for programmers they can understand

the software by a demo of the software, demo gives an idea to

the programmer…”

SC-2-3 Not started from scratch “Now I think this concept that you start developing a product

from scratch is impractical because right now the time is scarce

in the world.”

“Software product lines are started with having some

component in hand means the company is already working in

this domain and that is why OSS may help them to start

product line or to add new product into the line.”

Table 7 Sub categories of ‘Using OSS in SPL’

Cat-3 Using OSS in SPL

Sub

Category

ID

Sub Category Name Representative Quote

SC-3-1 Fast transition “If such setup is developed (using open source to build family of

systems) then the transition from manual to computerize will be

much faster.”

SC-3-2 OSS is attracting SPL community “OSS is very attractive to product line community.”

SC-3-3 Improvement in quality “The number of times a component is reused its quality is

improved.”

“Reuse also refines the product.”

SC-3-4 Provides opportunities “It’s a good opportunity that you have idea or free code and then you

©2012-13 International Journal of Information Technology and Electrical Engineering

42

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

develop product lines.”

Table 8 Sub categories of ‘Role of OSS in promoting reuse’

Cat-4 Role of OSS in promoting reuse

Sub

Category

ID

Sub Category Name Representative Quote

SC-4-1 Saves time “…it saved time otherwise it will take weeks to develop it.”

SC-4-2 Less effort required “It saves around 80% of the time and less effort is required.”

SC-4-3 Ease of development “Nowadays open source development is encouraged within the

software development community, and people are going towards

open source, they feel very easy to develop.”

SC-4-4 Market trust “The company which reuse can develop a system in months and

other may take a year… the company which is running a product

line in some domain it also develop a trust.”

3.3 Using OSS in SPL

This category is based on the views of the

respondents on the use of open source software in product

lines. The sub categories are presented in Table 7 with their

corresponding representative quotes.

The use of OSS in an SPL facilitates a fast transition

towards automation and the entering into new markets. OSS is

a platform which provides components; it attracts the SPL

community. The attraction is due to the benefits of OSS. The

use of OSS in an SPL improves the quality of the software.

OSS is an opportunity for the SPL community to add more

innovations to their product lines.

3.3.1 SC-3-1 Fast Transition

The use of OSS to develop a product line provides an

opportunity to develop a new product in less time. More

generally, it hastens the transition of manual to automated

systems as many of the systems which we interact with in our

daily life are similar to one another. SPLs deal with such

similarities (commonalties). The infrastructure of OSS core

assets can be used to initialize many specialized products.

3.3.2 SC-3-2 OSS is Attracting SPL Community

OSS is attracting the product line community in the

sense of starting a new product. An organization can develop a

new product in less time using OSS. On the other hand,

product lines are seldom started from scratch. So, OSS

provides a good start to the SPL community. Obviously the

standards and quality of OSS is an issue in the case of OSS

based SPLs.

3.3.3 SC-3-3 Improvement in Quality

The reuse of software improves its quality. However,

in the case of SPLs it is even more beneficial. The core assets

are reused in multiple applications; this reuse refines the

components. The more times a component is reused the

greater is its quality. Another aspect of this is that the end

user/customer is in a better position to state his/her

requirements and comment on a system after using a similar

one. The findings are in line with the other available studies.

The improvement in quality that OSS brings about can be

credited to fewer defects per line of code [27], and to

improved reliability [28, 29].

3.3.4 SC-3-4 Provides Opportunities

The respondents considered OSS based SPLs as a

window of opportunity. This reuse may lead to the inter-

organizational reuse of the components. Reuse will be moved

to a higher level, one that finds commonalties among domains.

Such types of core assets will be developed which are for use

by multiple domains.

3.4 Role of OSS in promoting reuse

This category is based on the role of OSS in the

promotion of reuse, i.e. why OSS is influencing reuse intense

software development. The sub categories and their

corresponding representative quotes are presented in Table 8.

The role of OSS in promoting reuse has four

dimensions. These dimensions include time and effort saving

aspects, ease of development and market trust. The market

trust, or in other words the trust of the customers, is gained by

an organization entering into new domains by using OSS.

3.4.1 SC-4-1 Saves Time

The topmost benefit of reuse is that it saves time. The

results of a survey based study [30] state that by reusing OSS

the developer can save time for other important tasks of the

project. Software engineers prefer to reuse a component if one

is already available. On the organizational level and in product

line practices reuse results in a short delivery time. New

products can be launched in a shorter time. It provides a

©2012-13 International Journal of Information Technology and Electrical Engineering

43

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

competitive edge and there is time available for

experimentation and innovation to enhance the features of the

product.

3.4.2 SC-4-2 Less Effort Required

Reuse also results in saving effort. Less effort is

required to develop software using OSS as compared to

starting from scratch. In the context of SPL, product lines are

seldom started from scratch. The organizations which move

towards the development of an SPL already have experience

of that particular domain.

3.4.3 SC-4-3 Ease of Development

OSS allows for easier development; that is why its

use is encouraged in the software industry. Developing a new

product is easy. A developer, who is new to the domain, can

get domain knowledge by reusing the components.

3.4.4 SC-4-4 Market Trust

The reuse of OSS enables a company to launch a

product more rapidly. A potential customer prefers products of

a company that is already developing software in that

particular domain. OSS usage develops the trust of the

customer.

3.5 Factors Affecting Reusability

The factors identified as the attributes of reusability

are assembled under this category. The factors and

corresponding quotes are presented in Table 9.

The findings reported in this study have extended the

body of knowledge by adding new attributes of reusability.

The salient feature of this study is the identification of the

reusability attributes from the perspective of the software

developer. This identification is based on interviews. The use

of this method of enquiry is motivated by another view of

reusability. This view is presented in [31]; it states that

reusability is a form of usability from the perspective of the

software developer. Using an interview is one of the most

suitable methods in such a situation. In a recent focus group

study it was reported that documentation (as we mentioned

earlier) and maintainability are among the most important

technical factors [22]. These factors should be taken into

account when selecting an OSS component.

3.5.1 SC-5-1 Flexibility

Flexibility is related to reusability in two ways. First,

it is the ability of a component to be used in multiple

configurations. Second, it is a necessary attribute concerning

future requirements and enhancements.

3.5.2 SC-5-2 Maintainability

Maintainability is related to reuse in terms of error tracking

and debugging. If the component is maintainable it is more

likely to be reused. In cases where OSS components are

running on systems connected to another system then a bug is

particularly problematic. Sometimes debugging a component

on one configuration may not work on other configurations.

On the other hand, in black box reuse, maintainability is not

considered a factor of reusability.

3.5.3 SC-5-3 Portability

Portability is considered a factor in the sense that a

cohesive component is more portable. A component having all

the necessary information within it or having less interaction

with another module during its execution is more reusable.

Again in the case of black box reuse it is not a factor.

3.5.4 SC-5-4 Scope Coverage

Another characteristic of open source components is

the extent of their scope. A developer would prefer a

component to cover as much of the application’s functionality

as possible. Large components are of concern as it often

means a high level of complexity and poor understandability.

Furthermore, scope coverage is important in situations where

future enhancements have already been envisioned, or where

there is the likelihood that more features will be added in the

future.

3.5.5 SC-5-5 Stability

Stability is one of the identified factors of reusability

in this study. The respondents regard stability as an important

factor to be considered while making decisions. Stability of a

component refers to its quality of being error free. In [22] the

concept of stability is linked to the “ad hoc standard.” The

explanation of the term ‘ad hoc standard’ is stated as “that

they are used in many products of that kind”. Our notion to

explain this phenomenon is ‘safety in numbers’. OSS

contributed to by many developers and used in many

applications is more stable. Stability is also related to the

usage history of the component.

3.5.6 SC-5-6 Understandability

The respondents also have a consensus of opinion on

the importance of the understandability attribute. It is also

related to the maintainability of the component; a component

that is easy to understand is easy to maintain.

Understandability affects the reliability of a component.

3.5.7 SC-5-7 Usage History

In this study, ‘usage history’ is identified as one of

the factors that influence reusability. Usage history provides a

hint about the usefulness of the component. Another side of

usage history is the maturity of the component. The

component can be considered mature if it is used in many

applications. The use of a component in many applications

also reflects its quality of interoperability. It provides

confidence to the potential user that a component can be easily

adapted. Another aspect of usage history is that the use of a

particular OSS in different applications provides an example

of usage of the component. This example can be effective for

learning purposes. A similar concept to ‘usage history’ is

‘release history’, as mentioned in [32]. Release history refers

to “how often the new releases come out”.

3.5.8 SC-5-8 Variability

Variability is one of the factors identified; increased

variability decreases understand-ability. Variability is also

seen as the configurability of a component, that it can be

configured in multiple configurations. Variability is also

related to the scalability property of a component, that is it can

©2012-13 International Journal of Information Technology and Electrical Engineering

44

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

be scaled up whenever required. Variability is further

examined and explained in [33], metrics to measure variability

at source code level are presented in [34].

Table 9 Identified factors and representative quotes

Cat-5 Factors Affecting Reusability

Sub Category ID Sub Category Name Representative Quote

SC-5-1 Flexibility “Flexibility refers to the ability to use it in multiple configurations.”

“In order to reuse some component source code it should be flexible

enough to be used in several contexts.”

“Flexibility is necessary because there are changes required with the

passage of time, so it saves you not to be bound.”

SC-5-2 Maintainability “Maintainability is a large problem in such situations when you use

OSS and we are running the system with connectivity with other

systems; so every time there are some bugs and removing the bugs in

other code that is developed by some else is very difficult for the

developer.”

SC-5-3 Portability “Portability is also related to the install ability, it should be taken care

and portability should be economical we don’t have to install other

software to run a component in other systems.”

SC-5-4 Scope Coverage “That depends on the situation but normally we choose the more

coverage component as compared to the less covered one.”

“… it depends on the application if we want to extend further our

application then we will go for more features.”

SC-5-5 Stability “Stable meaning reasonably error free and it could be used with

confidence that there is no bug.”

SC-5-6 Understandability “If I don’t understand it then I can’t show that it is reliable and prove

it to myself then I am not going to use it.”

“Size can be managed but if it is not understandable then it is difficult

to reuse”

SC-5-7 Usage History “Usage history also shows the maturity of the component and how

many people have used and made changes to it.”

“In many cases open source software is used by many people many

engineers, already proven its usefulness.”

SC-5-8 Variability “Variability is a two edge sword in other words there are advantages

and disadvantages.”

SC-5-9 Documentation “If there is lack of documentation then I mean it creates hurdles to

understand the code for any other developer or the software

engineer.”

“If there is no proper documentation then others cannot understand

the software neither can change nor modify it.”

3.5.9 SC-5-9 Documentation

The respondents consider documentation as one of

the most important factors affecting flexibility,

understandability and reusability. The issue of documentation

is multifaceted. Usually, OSS comes without much

documentation. OSS is developed and contributed to by many

developers. The number of developers may reach up to the

thousands, as in the case of Linux. The code size increases

rapidly. So, it is very difficult to analyze code without

documentation.

Documentation is associated with understandability.

The lack of documentation, or poorly maintained

documentation, hinders understandability. Documentation also

provides a record of the component; the component history

can be known by seeing the documentation. [32] recommends

considering the documentation of OSS as a criterion for

selecting candidate OSS. The finding presented in this study

©2012-13 International Journal of Information Technology and Electrical Engineering

45

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

that documentation is one of the factors which affect

reusability is in line with [32].

 3.6 Desirable Characteristics of OSS
The desirable characteristics of OSS identified during

the study are presented in this category, and shown in Tables

10. In this study, the desirable characteristics of OSS are seen

from the perspective of academics and industry.

3.6.1 SC-6-1 Academic Perspective

The desirable characteristics of OSS, from an

academic perspective, include the availability of test cases

associated with the open source software. This finding is in

line with [22] where the availability of test cases is considered

as one of the plus points. The primary focus of an OSS

developed in academia is innovation and functionality. OSS in

academic settings is intended to extend the body of

knowledge. There is room for experimentation in academia.

3.6.2 SC-6-2 Industrial Perspective

A business desires different characteristics from

software than academia does. Firstly, there is no room for

experimentation in business environments or in commercial

software development. The critical factor in a business

environment is risk aversion. Several methods are used for the

assessment and mitigation of potential risks.

3.6.3 SC-6-3 Maintenance Support

Maintenance is one of the issues in OSS. This is

because of the shared/lack of ownership of the software. The

potential user of OSS looks for its maintenance support. This

factor is important as it influences the decision to use a

particular OSS. OSS having maintenance support is

preferable.

3.6.4 SC-6-4 Maintenance Agreement

In some situations companies may opt for a

maintenance agreement with the developing organization.

This kind of agreement covers extensions or changes to the

software. On the one hand, the customer prefers maintenance

agreements for their future needs or enhancements to the

systems. On the other hand, software development companies

earn additional revenues from these agreements.

3.6.5 SC-6-5 Infrastructure Support

Infrastructure support is identified as one of the

desirable characteristic of OSS in this study. The range of

infrastructures that support execution of the OSS is one of its

defining characteristics. Here, the term ‘infrastructure’ refers

to the operating system, web application server or the

graphical user interface. So, OSS with more comprehensive

infrastructure support is preferable. Wider infrastructure

support makes the OSS an affordable choice under most

circumstances. ‘Infrastructure support’ is also mentioned in

[32], as one of the criteria for choosing OSS. It suggests

asking the question: “Are they (OSS) compatible with the rest

of your infrastructure?”[32].

3.6.6 SC-6-6 Maturity of OSS

The maturity of OSS is identified as a desirable

characteristic in this study. The maturity of the OSS plays an

important role in the selection making decision. One way to

know the maturity of OSS is to look for its usage in different

scenarios. These examples of use provide evidence to the

potential user. The potential user may find similarities or

differences in the examples and scenarios. The comparison

helps him/her to build confidence in particular OSS. The

potential user may identify related threats and risks.

‘Maturity of OSS’ is also identified as a desirable

characteristic by [22] and [32], where the maturity of a

community is considered to gauge the maturity of OSS.

3.6.7 SC-6-7 Error Handling Mechanism

The availability of an error handling mechanism is a

desired characteristic of OSS. An error handling mechanism

includes knowledge about the error types, related messages

and their remedies. A remedy may include the types of

parameters required to remove the error.

3.6.8 SC-6-8 Scalability

The capability of OSS to be scaled is considered a

desirable characteristic. The scalability of OSS is its ability to

handle the growing needs of the organization. It is also

considered a variability parameter - that new functionality can

be added or existing functionality extended.

3.7 Suggestions

The suggestions provided by the respondents are

presented in this category, and are shown in Table 11.

3.7.1 SC-7-1 Inter Language Reuse

Inter language reuse of OSS is one of the

suggestions. It can be viewed as a challenge to software

engineering. Generic artifacts such as design documents and

requirements specifications can be implemented in different

languages. This is due to their abstract nature. However, code

assets lack this level of abstractness. One of the possible

solutions is the conversion of code of one language to another

with the help of some intermediating software.

3.7.2 SC-7-2 Software Agents

The development of software agents is suggested by the

respondents. These agents should be capable of guiding the

software developer as to which kind of changes is required

when adapting a particular component. These agents may help

users by creating a meta-data file, containing the details of

structures, classes, their types and relationships. This is so that

the developer can see what changes are required, and it may

help him/her to make a decision as to whether or not to use a

particular component.

©2012-13 International Journal of Information Technology and Electrical Engineering

46

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

Table 10 Sub categories of ‘Desirable characteristics of OSS’

Cat-6 Desirable characteristics of OSS

Sub Category

ID

Sub Category Name Representative Quote

SC-6-1 Academic Perspective “In academics because you are not delivering the PL for business

purposes and the value is or the basis is extending the body of

knowledge and helping other researchers to develop or break through

in new area of software capabilities or demonstrating new algorithms

or infrastructures whatever its purely functionality and functionality

could be the number of test cases delivered with the open source

product and the ease of use.”

SC-6-2 Industrial Perspective “…the critical business importance is not to take risks this is known

as the risk assessment, how risky it is and for risk there are several

ways of determining risks.”

SC-6-3 Maintenance Support “…support for the open source software is the number one

characteristic we look for”

SC-6-4 Maintenance

Agreement

“companies may opt for maintenance agreement with the developer

company, at any time during the agreement if there is a need of

extensions or change company can provide support”

SC-6-5 Infrastructure Support “I would be looking for the software that has the capabilities that I

want to include in my product line but also the capabilities that I need

to support the services or the infrastructure”

SC-6-6 Maturity of OSS “…we look for is how mature it is and if we have to change anything

to make it work, how many examples of it are being used in software

community”

SC-6-7 Error Handling

Mechanism

“When an error happens, what type of interrupt /what type of

message is passed back? What type of parameters is required to

handle the error?”

SC-6-8 Scalability “The biggest variability parameter, I am concerned with is the scale

of the work… in other words, will this component scale?”

Table 11 Suggestions and representative quotes

Cat-7 Suggestions

Sub Category

ID

Sub Category Name Representative quote

SC-7-1 Inter Language Reuse “…for example if I want to extract Python code, if I use Python

code for example I am a C# programmer that use dot net

technology so how can I use it ... for example I use Python for text

processing, how can I use Python code?

How can it be portable or how can it be easily used in Java or C?”

SC-7-2 Software Agents “…for software development there is such type of agent, that they

can easily see other things also, if they are using some other code,

agent can suggest which kind of change is required and which

variable constant you should change or which type of features/

classes.”

©2012-13 International Journal of Information Technology and Electrical Engineering

47

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

4. DISCUSSIONS

The adaptation of the coding process, i.e. the use of a

word cloud, is a methodological contribution of this study. It

may be used in other studies where textual data is analyzed. In

this research, a word cloud is used after open coding to aid the

process by ensuring that none of the recurring words related to

a concept are missed. However, this technique can be used to

pilot the open coding process, especially when a large amount

of textual data is processed.

A word cloud can be more useful in the analysis of

transcripts from unstructured interviews. The adaptation of the

coding process may be used in grounded theory studies.

5. VALIDITY OF RESULTS

For qualitative research there are different types of

validity: descriptive, interpretive, concurrent and theoretical

validity [35]. Descriptive validity is related to the reporting of

events, behaviours, settings, people, places and time. This is

not much of a concern in this study. Interpretive validity is

more of a concern for our research. Whenever there was

ambiguity, the transcriptions were reviewed by the researcher

to ensure the interpretive validity of the results. Furthermore,

the findings of the qualitative studies are provided to the

respondents. This measure was taken to cater for respondents’

possible apprehension of the results. The respondents verified

the interpretations.

Theoretical validity of the results is maintained by

comparing the findings of this research study with

contemporary studies. It can safely be said that the findings

presented in this study are in line with the available theory.

Concurrent validity of the results is exhibited by the

fact that the qualitative data were collected using seven

interviews and similar patterns and trends were identified from

the collected data. Only findings are reported that are

concurrent, i.e. extracted from multiple respondents. The

findings presented under the category ‘suggestions’ are

subject to concurrent validity.

One of the category i.e. factors affecting reusability confirms

and enhances our other works [36] in this field regarding the

reusability of aspect oriented components. A summary of

findings of this research is presented in Figure 3.

6. CONCLUSION

OSS has opened up new opportunities for reuse-intensive

software development. This exploratory study was conducted

to report the state of the art in this field. In this study, an

exploratory research method, the interview, was used to gather

data. Interpretation of the data was heavily influenced by what

the literature says. The findings of the study are structured

into seven categories and their 39 dimensions. These

categories and their dimensions provide an in-depth view from

the perspective of the potential user, the software engineer.

Having distinguished respondents, with knowledge spanning

both software houses and academia, ensures the credibility of

the research. Apart from these findings, the study also makes a

methodological contribution (an adaptation to the coding

process). In future, studies may be carried out to further

explore the identified issues reported in this study.

REFERENCES

[1] Niemi, T., et al., "Server-Based Computing Solution

Based on Open Source Software," Information

Systems Management, vol. 26, pp. 77-86, 2009.

[2] Stafford, J. 2006, Time to plan your company’s

escape from Microsoft. Available:

http://searchenterpriselinux.techtarget.com/news/116

3576/2006-Time-to-plan-your-companys-escape-

from-Microsoft, 01 June

[3] Kenwood, C. A., "A Business Case Study of Open

Source Software," The MITRE Corporation2001.

[4] Krishnamurthy, S., "A Managerial Overview of Open

Source Software," Business Horizons, vol.

September-October 2003, 2003.

[5] Linden, F. v. d., et al., "Commodification of

Industrial Software: A Case for Open Source," IEEE

Software, vol. 26, pp. 77-83, 2009.

[6] Wheeler, D. A. 2005, Why Open Source Software /

Free Software (OSS/FS, FLOSS, or FOSS)? Look at

the Numbers! Available:

http://www.dwheeler.com/oss_fs_why.html, 01 June

[7] Howe, C., "Open Source Cracks The Code,"

Forrester Research2000.

[8] Ågerfalk, P. J., et al., "Assessing the Role of Open

Source Software in the European Secondary Software

Sector: A Voice from Industry," presented at the First

International Conference on Open Source Systems,

Genova, 2005.

[9] Hummel, O., et al., "Code Conjurer: Pulling

Reusable Software out of Thin Air," IEEE Software,

vol. 25, pp. 45-52, 2008.

[10] Wasserman, A., "How the Internet transformed the

software industry," Journal of Internet Services and

Applications, vol. 2, pp. 11-22, 2011.

[11] Sommerville, I., Software Engineering, 8th ed.:

Addison-Wesley, 2007.

[12] Ågerfalk, P., et al., "Open Source in Software

Product Line: An Inevitable Trajectory," in 10th

International Software Product Line Conference

(SPLC '06), 2006.

[13] Ahmed, F., et al., "A Model of Open Source

Software-Based Product Line Development," in

Computer Software and Applications, 2008.

COMPSAC '08. 32nd Annual IEEE International,

2008, pp. 1215 -1220.

[14] Stol, K. J. and Babar, M. A., "Challenges in using

open source software in product development: a

review of the literature," presented at the Proceedings

of the 3rd International Workshop on Emerging

Trends in Free/Libre/Open Source Software Research

and Development, Cape Town, South Africa, 2010.

http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-your-companys-escape-from-Microsoft
http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-your-companys-escape-from-Microsoft
http://searchenterpriselinux.techtarget.com/news/1163576/2006-Time-to-plan-your-companys-escape-from-Microsoft
http://www.dwheeler.com/oss_fs_why.html

©2012-13 International Journal of Information Technology and Electrical Engineering

48

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 2, Issue 5
August 2013

[15] Saunders, M., et al., Research Methods for Business

Studies 5th ed.: Prentice Hall, 2009.

[16] Strauss, A. and Corbin, J., Basics of Qualitative

Research Techniques and Procedures for Developing

Grounded Theory, 2nd edition ed.: Sage Publications,

1998.

[17] Seaman, C. B., "Qualitative Methods in Empirical

Studies of Software Engineering," IEEE Transactions

on Software Engineering, vol. 25, pp. 557-572, 1999.

[18] Gray, D. E., Doing Research in the Real World, 2nd

ed.: SAGE Publication Ltd., 2009.

[19] Punch, K. F., Introduction to Research Methods in

Education Sage Publications Ltd., 2009.

[20] atlas.ti. 2011, atlas.ti. Available: www.atlasti.com,

06, June

[21] Bongshin, L., et al., "SparkClouds: Visualizing

Trends in Tag Clouds," IEEE Transactions on

Visualization and Computer Graphics, vol. 16, pp.

1182-1189, 2010.

[22] Höst, M., et al., "Usage of Open Source in

Commercial Software Product Development –

Findings from a Focus Group Meeting," in Product-

Focused Software Process Improvement. vol. 6759,

D. Caivano, et al., Eds., ed: Springer Berlin /

Heidelberg, 2011, pp. 143-155.

[23] Schryen, G., "Is open source security a myth?,"

Communications of the ACM, vol. 54, pp. 130-140,

2011.

[24] Stol, K. J., et al., "A comparative study of challenges

in integrating Open Source Software and Inner

Source Software," Information and Software

Technology, vol. In Press, Corrected Proof, 2011.

[25] Haefliger, S., et al., "Code Reuse in Open Source

Software," MANAGEMENT SCIENCE, vol. 54, pp.

180-193, January 1, 2008 2008.

[26] von Krogh, G., et al., "Knowledge Reuse in Open

Source Software: An Exploratory Study of 15 Open

Source Projects," in System Sciences, 2005. HICSS

'05. Proceedings of the 38th Annual Hawaii

International Conference on, 2005, pp. 198b-198b.

[27] Joode, R. v. W. d., et al., "Rethinking free, libre and

open source software.," Knowledge, Technology &

Policy, vol. 18, pp. 5-16, 2006.

[28] Forge, S., "The rain forest and the rock garden: the

economic impacts of open source software," info, vol.

8, pp. 12-31, 2006.

[29] Varian, H. R. and Shapiro, C., "Linux adoption in the

public sector: An economic analysis (Technical

Report)," UC Berkeley2003.

[30] Sojer, M. and Henkel, J., "Code Reuse in Open

Source Software Development: Quantitative

Evidence, Drivers, and Impediments," Journal of the

Association for Information Systems, vol. 11, pp.

868-901, 2010.

[31] Lazaro, M. and Marcos, E., "An Approach to the

Integration of Qualitative and Quantitative Research

Methods in Software Engineering Research," in 2nd

International Workshop on Philosophical

Foundations of Information Systems Engineering

(PHISE’06), 2006.

[32] Spinellis, D., "Choosing and Using Open Source

Components," IEEE Software, vol. 28, pp. 96-96,

2011.

[33] Fazal-e-Amin, et al., "An analysis of object oriented

variability implementation mechanisms," SIGSOFT

Softw. Eng. Notes, vol. 36, pp. 1-4, 2011.

[34] Fazal-e-Amin, et al., "Metrics Based Variability

Assessment of Code Assets " in Software

Engineering and Computer Systems. vol. 181, J. M.

Zain, et al., Eds., ed: Springer Berlin Heidelberg,

2011, pp. 66-75.

[35] Johnson, B. and Christensen, L., Educational

Resaerch : Quantitative, Qualitative, and Mixed

Approaches 4th ed.: Sage Publication, Inc., 2011.

[36] Fazal-e-Amin, et al., "A proposed reusability

attribute model for aspect oriented software product

line components," in Information Technology

(ITSim), 2010 International Symposium in, 2010, pp.

1138-1141.

http://www.atlasti.com/

