

Information Technology & Electrical Engineering

ITEE Journal

©2012-13 International Journal of Information Technology and Electrical Engineering

Economic Load Dispatch of Thermal Power Plants Using Differential Evolution

¹Dr N Visali, ²M Surendranatha Reddy, ³M Satish kumar reddy ¹Professor, Department of electrical and electronics engineering, JNTUACEP

Pulivendula, Andhra Pradesh.

²Asst. Prof, Department of Electrical and electronics engineering, Vaagdevi Institute of Technology & Sciences, Proddatur, Kadapa

Dist, Andhra Pradesh.

³PG Student in JNTUACEP, Pulivendula , Andhra Pradesh.

nvisali@gmail.com, suri6mudimela@gmail.com, satish4project@gmail.com

Abstract- In present days with increasing in load demand and with large interconnection of networks it is essential to run the generating stations optimally with in its constraints so as to meet the load demand. Without optimization the price for the cost of generation is increasing day to day. So it is very essential to reduce the running charges for generating electric energy. The main economic factor in power system planning, operation and control is with the cost of generating real power. The running cost will be the main consideration with respect to the fuel for thermal power plants. So minimization of fuel cost will be criteria for thermal power plants.

A major objective for the thermal power generation is to minimize fuel consumption by allocating optimal power generation to each unit (economic dispatch) subject to equality and inequality constraints. The optimum generation scheduling plays an extremely important role in optimal operation of utility power system. This importance is due to power savings. This paper proposed a lambda based approach for solving the Economic Dispatch (ED) problem. The ED is to minimize the operating fuel cost while satisfying the load demand and operational constraints. This paper solves sample test system of six generator system and 15 generator systems for various load demands neglecting transmission losses.

Nomenclature: Analytical method-lambda iterative method, P_{G} real power generations, P_L -transmission loss, c-cost of real power generations, a_i , b_i , d_i - generator coefficients, P_D -load demand, EDeconomic dispatch, EDC-economic dispatch computation

I. INTRODUCTION

The size of electric power system is increasing rapidly to meet the energy requirements. A number of power plants are connected in parallel to supply the system load by interconnection of power stations. With the development of grid system it becomes necessary to operate the plant unit most economically. The economic generation scheduling problem involves two separate steps namely the unit commitment and the online economic dispatch. The unit commitment is the selection of unit that will supply the anticipated load of the system over a required period of time at minimum cost as well as provide a specified margin of the operating reserve. The function of the online economic dispatch is to distribute the load among the generating units actually paralleled with the system in such a manner as to minimize the total cost of the fuel [1]. To calculate electric power generation of various units with different load demands, is solved by

iterating the value of sum of the generator outputs equals the system load demand. Economic dispatch programs which are installed today in the most modern control centres uses the analytical methods to solve a well known exact co-ordination equations. The main difference between different techniques is the method used to solve the co-ordinations equations proposed by K.Srikrishna [2]. The co-ordination equations are generally solved by interactively adjusting the load until the generator output matches the system load demand when we neglect transmission losses. New graphical method for optimum power generation with neglecting the B-coefficient matrix is discussed [3]. The differential evolution method to optimize generation schedule neglecting the transmission losses is discussed in method proposed by kirchmayer [4]. Simplified approach to solution of co-ordination equation for generation scheduling is discussed by a method named Quick method to optimize generation scheduling proposed by C. Palanichamy [5]. The economic load dispatch solution can be analysed as the optimal solution corresponding to the minimum cost of generation proposed by K. Nagappa [6]. The cost of power generation is not the same for every unit. So, to have the minimum cost of generation for a particular load demand, we have to distribute the load among the units which minimize the overall generation cost with the constraint that no unit is overloaded.

II. OBJECTIVE FUNCTION

The majority of generating units have a non linear cost function. The objective function of thermal power plant is

$$C_i = a_i P_{G_i}^2 + b_i P_{G_i} + d_i \dots (1)$$

Where a_i is a measure of losses in the system, b_i is the fuel cost and d_i is the salary and wages, interest and depreciation.

The optimal dispatches for the thermal power plants should be such that the total electric power generation equal to the load demand when neglecting line losses, which can be written as:

$$\sum_{i=1}^{n} PGi = PD \dots (2),$$

n = total number of generating plants, PGi = generation of ith plant, PD = system load demand.

The inequality constraints is given by

 $\begin{array}{ll} P_{GiMin} \leq P_{Gi} \leq P_{GiMax} & (3) \\ Maximum \ active \ power \ generation \ P_{GiMax} \end{array}$

Volume 2, Issue 6 December 2013

ITEE Journa

Information Technology & Electrical Engineering

ISSN: - 2306-708X

©2012-13 International Journal of Information Technology and Electrical Engineering

Minimum active power generation P_{GiMin} **III. METHODOLOGY**

The objective of optimum generation scheduling for thermal power plants is to allocate the generation to each and every units in a plant for a given load such that fuel cost is minimum subjected to equal and inequality constraints. Here, optimum generation scheduling is achieved by following technique.

DIFFERENTIAL EVOLUTION

Differential Evolution is a method used in this paper to solve the economic load dispatch problem when transmission losses are neglected. An initially random population of individuals (trial solutions) is created. Mutations are then applied to each individual to create new individuals. Mutations vary in the severity of their effect on the behaviour of the individual. The new individuals are then compared to select which should survive to form the new population. DE is similar to a genetic algorithm, but models only the behavioural linkage between parents and their offspring, rather than seeking to emulate specific genetic operators from nature such as the encoding of behaviour in a genome and Mutation, recombination by genetic crossover. recombination, and selection are iterated with the goal of driving a population of candidate solutions toward better and better regions of the search space. We have to select the number of populations' value randomly until we get optimum scheduling which meets the sum of generations of all units equal to load demand and transmission losses. This value of number of populations is selected by using trial and error method. Then the dimensions for the system which we apply differential evolution is selected. After we select scheduling of generators optimally, we need minimum cost of generation, so from optimum scheduling the cost of real power generation which has minimum value is selected. The dimensions are selected based on the number generators we are scheduling for optimality. The cross over to solve the optimum generation scheduling is taken. Then the strategy to solve this scheduling is taken for small population sizes and fast convergence. Dimensionality should not be too high. In this paper, we consider number of dimensions with "D", number of parameter, number of populations as " N_P ", cross over probability as "CR". The minimum and maximum generating constraints are considered for optimum scheduling. The weight vector is also considered for the scheduling to be optimum.

Algorithm

The Algorithm is as follows:

1. Start

2. Initially chose $\lambda = \lambda_0$, this value should be greater than the largest intercept of the incremental cost of the various units. Calculate P_{Gl} , $P_{G2,\dots,r}$, P_{Gi} based on equal incremental cost.

3. Assume $P_{GI} = 0.0$; i=1, 2 ... N

4. Read the constants a_i , b_i , d_i , power demands P_{D} , maximum P_{GiMax} , minimum P_{GiMin} generators real power limits.

Steps including differential evolution

i. An Initial population of Np parent vectors is considered as the trial solution and the number of dimensions is taken as D. Then cross over probability is taken as CR and weight vector is also considered.

ii. From these parents off springs are created by mutation, hence N_p off springs are obtained

- iii. By combining the parents and off springs, 2N_p solutions are obtained
- iv. Through competition and selection, first N_p optimal solutions are selected
- v. The selected solutions are considered as parents for the next iteration
- vi. After the required number of iterations, the best optimal solution is obtained
- 5. Calculate the generation at all buses using
- $P_{Gi} = (1-b_i/\lambda)/(2a_i/\lambda) ---(4)$ where i=1,2,----,n

keeping in mind that the values of powers to be substituted on the RHS of Equation during zero iteration correspond to the values calculated in step 2. For subsequent iterations the values of powers to be substituted corresponds to the powers in the previous iteration. However if any generator violates the limit of generation that generator is fixed at the limit violated.

6. Check if the difference in power at all generator buses between two consecutive iterations is less than the specified value, otherwise go backing to step 2.

7. Check if power balance equation is satisfied,

 $\sum_{i=1}^{n} PGi - PD < \in \dots (5)$

if yes, stop. Otherwise, go to step-9.

8. Increase λ by $\Delta\lambda$; if

 $\sum_{i=1}^{n} PGi - PD < 0.\dots(6)$

decrease λ by $\Delta\lambda$; if

 $\sum_{i=1}^{n} PGi - PD > 0$(7)

9. Repeat from step 5 10. Update λ as $\lambda^{(k+1)} = \lambda^{(k)} - \Delta \lambda^{(k)}$ where λ is the step size **IV. TEST CASES**

Here we consider two test systems. In the first case 6 generators are considered with their cost curve equations (second order polynomial expression). The optimal generation scheduling of six thermal generating units for different loads are determined and also cost of generation for different loads is determined. The cost for economic allocation of generation to each generating unit is determined and whether all units are satisfying its equality and in equality constraints are verified. In the second case 15 generators are considered with their cost curve expression (second order polynomial equation). The optimum generation scheduling for different load conditions is explained here. The optimal generation scheduling of 6 thermal generating units and 15 thermal generating units for different loads are determined and also cost of generation for different loads is determined using Differential Evolution technique. The cost for economic allocation of generation to each generating unit is determined and whether all units are satisfying its equality and in equality constraints are verified.

ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-13 International Journal of Information Technology and Electrical Engineering

EE Journa

Results: Test Case I

The input data is taken from reference [7]. The result for optimum generation scheduling for different load conditions is given in table 4.1. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically [9].

P _{DT}	955	942	935	930	935	963
	347.8	351.36	409.510	301.35	409.51	354.19
P _{G1}	55	57	6	04	06	94
	165.4	87.083	158.051	154.90	158.05	131.44
P _{G2}	891	5	2	01	12	45
	172.6	260.09	128.165	253.36	128.16	188.36
P _{G3}	39	27	5	07	55	19
	93.89	104.75		63.789	94.753	95.232
P_{G4}	89	34	94.7536	7	6	6
	123.3	80.396		97.539	83.922	141.31
P _{G5}	17	2	83.9223	2	3	84
	52.16	58.647			59.683	
P _{G6}	83	8	59.6836	59.324	6	53.864
cost	673740	673740	670860	665820	670860	687000

Table 4.1 Real power generations & cost for various loads

The result for different load conditions is given in table 4.2. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically.

P _{DT}	989	1023	1126	1150	1201	1235
	319.84	424.21	488.16	446.00	498.21	461.10
P _{G1}	2	57	65	42	54	63
	129.26	129.72	131.16	174.15	149.55	133.04
P_{G2}	67	78	74	68	65	98
	235.13	260.47	231.19	157.35	246.47	262.06
P _{G3}	08	43	82	55	54	45
	72.723	94.259	121.83	144.09	71.188	128.77
P _{G4}	1	9	76	19	6	15
	177.22	62.702	94.295	166.48	179.64	183.96
P _{G5}	77	2	5	67	6	28
	55.018	52.055	59.869	63.492	55.783	95.926
P _{G6}	7	1	1	2	7	5
cost	708720	733560	813000	833280	870780	895440

Table 4.2 Real power generations & cost for various loads

The result for different load conditions is given in table 4.3. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically.

P _{DT}	1190	1251	1263	1250	1221	1202
	440.28	495.67	423.00	487.06	455.17	476.86
P _{G1}	51	1	91	23	97	19
	134.08	185.59	191.96	192.18	170.71	181.59
P_{G2}	39	82	01	7	64	59
	284.51	254.69	253.35	295.07	232.02	200.51
P_{G3}	4	25	23	11	05	52
	119.66	54.479	136.32	113.60	137.92	79.284
P_{G4}	67	2	31	57	11	9
	137.41	189.23	196.28	94.486	158.34	199.73
P _{G5}	86	33	65	1	75	91
	74.461	66.685	62.577	68.262	66.758	62.673
P _{G6}	9	5	4	2	4	9
cost	860220	910920	917640	910740	884040	872340

Table 4.3 Real power generations & cost for various loads

Optimal generation allocation and cost of real power generation of six generating units for different load conditions are shown in tabular column. The result for different load conditions is given in table 4.4. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically

generators are operating economically.								
P _{DT}	1159	1092	1023	984	975	960		
	470.43	416.85	382.74	406.98	369.09	405.88		
P _{G1}	21	79	02	19	26	95		
	184.73	109.17	130.35	86.381	187.84	78.746		
P_{G2}	92	63	32	9	93	5		
	231.34	219.50	249.76	274.95	203.58	246.87		
P_{G3}	6	47	96	11	5	97		
	69.579	97.172	71.668	79.754		75.011		
P_{G4}	6	3	8	3	70.139	5		
	138.32	187.49	114.29	78.601	88.266	95.112		
P_{G5}	15	64	93	7	1	1		
	64.578	61.649	74.369	57.241		57.888		
P _{G6}	6	2	3	2	56.222	9		
cost	837120	784920	731700	705120	697560	685800		
Table -	4.4 Real po	wer genera	tions & cos	t for variou	ıs loads			

Thus above tabular columns show the optimal scheduling of six thermal generating plants along with their cost for real power generation. The graph shows the relation for time in 24 hrs for different load demands the cost of generating units in Rs/Hr to generate real power to meet load demands. Fig 1 shows the relation for time in hrs and cost of power generations of six units for 24 hrs to meet the load demand.

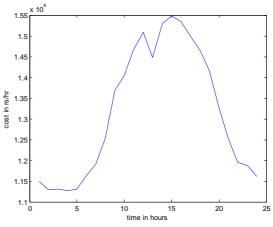


Fig 1. Time vs Cost real power generations of all units

Thus from Differential evolution programming technique we determine the real power generations for economic dispatch and cost of real power generation. The curve explains during peak load hrs cost of generation also increases. The results are shown in tabular column and graph.

Test Case II

The input data is taken from reference [9]. In this case we determine optimal generation allocation and cost of real power generation for 15 generating units for different load conditions. The result for different load conditions is given in table 4.5. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically [7].

P _{DT}	2236	2240	2226	2236	2298	2316
	260.3	328.91		248.78	183.54	342.4
P _{G1}	649	43	180.3993	37	2	472
P_{G2}	440.3	253.49	281.5067	336.35	277.69	303.1

ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-13 International Journal of Information Technology and Electrical Engineering

	8	17		29	18	894
	122.5	103.34		123.96	37.649	34.79
P _{G3}	413	66	120.59	8	8	09
	125.3	94.593		62.562	26.108	43.67
P _{G4}	876	4	114.2406	6	6	85
	216.0	236.52		283.50	394.93	211.0
P _{G5}	923	45	395.6461	87	63	301
	186.9	334.44		151.80	414.77	316.8
P _{G6}	027	09	151.361	17	48	199
	323.6	292.14		395.43	396.36	385.1
P _{G7}	81	8	436.9093	14	82	255
	202.3	108.18		163.59	131.32	218.9
P _{G8}	006	69	134.4656	47	23	524
	120.7	105.62		119.58	143.31	122.3
P _{G9}	097	39	50.5642	06	47	768
	66.28	141.08		112.92	123.85	98.59
P _{G10}	48	11	113.4644	28	35	76
	43.63	64.375				53.61
P _{G11}	11	2	68.232	63.141	23.653	33
	40.21	70.903		42.764	60.040	39.53
P _{G12}	31	6	62.652	8	9	3
	32.73			61.418	29.355	82.98
P _{G13}	96	55.875	76.8126	3	8	09
	18.47	28.644		40.813		19.53
P _{G14}	75	1	22.2384	2	18.88	69
	36.95			27.789	35.649	41.79
P _{G15}	77	22.248	17.0219	5	9	32
					100506	9489
cost	997560	100074	0 935040	914700	0	00

Table 4.5 Real power generations & cost for various loads

The result for different load conditions is given in table 4.6. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically.

P _{DT}	2331	2443	2630	2728	2783	2785	
	371.8	265.31	292.61	432.75	441.45	441.49	
P _{G1}	958	48	61	38	11	3	
	226.1	278.65	404.57	387.10	383.00	445.59	
P _{G2}	616	28	55	26	42	31	
	102.6	56.843	33.927	117.67	121.87	91.523	
P _{G3}	343	7	3	28	48	2	
	39.26	115.43	65.891	37.436	93.027	86.600	
P _{G4}	82	9	7	8	8	7	
	336.5	369.65	451.16	424.13	427.34	468.33	
P _{G5}	01	71	84	55	29	27	
	176.2	419.62	139.68	328.37	313.51	225.80	
P _{G6}	453	27	3	41	84	16	
	297.2	405.42	449.48	269.17	423.91	416.69	
P _{G7}	865	45	89	93	08	21	
	231.6		294.61	227.06	118.34	164.80	
P _{G8}	795	79.144	77	4	86	33	
	148.0	149.45	161.23	158.21	34.973		
P _{G9}	727	34	19	06	4	97.116	
	119.4	46.096	57.432	111.56	117.43	132.65	
P _{G10}	719	2	1	7	18	43	
	60.42	68.701	77.216	73.432	78.997	42.697	
P _{G11}	62	8	6	6	8	5	
	57.77	60.516	71.932	52.444	73.214		
P _{G12}	35	9	9	7	8	46.811	
	62.91	44.325	70.239	45.119	80.495		
P _{G13}	62	7	8	5	1	25.387	
	47.71	39.953	42.976	16.639	25.298	49.647	
P _{G14}	94	9	3	8	4	8	
	53.00		17.446	47.754	52.471		
P _{G15}	9	44.001	2	5	8	48.446	
	94650	110070	103608	123966	126762	125910	
cost	0	0	0	0	0	0	

Table 4.6 Real power generations & cost for various loads

Optimal generation allocation and cost of real power generation for six generating units for different load conditions are shown in tabular column. The result for different load conditions is given in table 4.7. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically.

P _{DT}	2780	2830	2970	2950	2902	2803
	395.0	383.73	385.65	335.20	426.54	324.20
P_{G1}	907	13	22	32	87	11
	434.5	440.64	445.80	412.40	398.93	388.76
P_{G2}	94	61	44	08	91	57
	60.42	24.589	128.65	95.803	112.86	40.634
P_{G3}	21	5	48	9	47	9
	101.5	128.33	53.695	28.873	112.96	114.18
P _{G4}	333	37	2	3	58	03
	435.5	433.98	333.59	386.23	428.24	317.32
P _{G5}	896	23	91	02	69	7
	452.8	414.02	426.78	456.44	439.65	296.24
P_{G6}	634	66	93	81	49	21
	407.5	440.11	429.85	418.13	343.16	463.74
P_{G7}	947	24	13	97	51	6
	148.5	272.20	281.48	294.94	188.14	264.82
P _{G8}	852	82	59	73	52	42
	94.38	64.188		100.06	145.16	136.50
P _{G9}	33	5	133.29	85	58	93
	41.92	28.326	128.86	159.94	126.23	
P_{G10}	41	2	59	21	45	147.23
	40.63	27.333	67.465	66.739	48.002	68.458
P _{G11}	18	3	4	9	4	2
	42.79	61.648	38.215	35.020	27.085	79.295
P _{G12}	36	4	9	7	1	6
	62.46	40.306	40.181	83.324		77.387
P _{G13}	15	8	5	3	42.833	8
	41.01	32.590	53.463	27.939	18.194	
P _{G14}	8	8	3	9	4	42.447
	18.98		23.104	50.397		43.143
P _{G15}	2	38.182	9	5	44.295	6
	13346	130146	126654	123354	135354	108582
cost	40	0	0 ations & co	0	0	0

Table 4.7 Real power generations & cost for various loads

The result for different load conditions is given in table 4.8. From the tabular column it is cleared that all generators are operating within its constraint limits. It means that all generators are operating economically.

	incaris that an generators are operating economicarry.								
P _{DT}	2651	2584	2432	2312	2261	2254			
	328.3	337.59	309.64	406.01	179.29	388.57			
P _{G1}	683	47	25	48	34	34			
	420.1	447.90	423.18	196.08	287.79	239.84			
P _{G2}	364	77	32	81	82	77			
	40.56	62.236			126.31	68.521			
P _{G3}	46	6	85.536	68.661	02	7			
	65.01	43.552	87.710	110.70	109.44				
P _{G4}	21	2	2	3	72	37.945			
	395.0	351.74	362.74	319.19	340.15	401.87			
P _{G5}	422	98	77	75	38	06			
	386.6	211.76	147.58	172.22	405.28	218.93			
P _{G6}	808	52	61	06	02	07			
	374.0	397.14	445.65	451.51	428.36	267.28			
P _{G7}	531	96	77	7	5	2			
	181.3	272.20	90.604	174.08	132.62	226.23			
P _{G8}	784	82	6	81	37	71			
	25.69	116.18	104.15	121.10	48.724	42.917			
P _{G9}	81	75	13	38	8	4			
	156.8	88.207			27.764	106.92			
P _{G10}	187	3	88.34	56.81	3	99			
	48.07	73.942	77.265	61.571	23.337	52.164			
P _{G11}	07	7	4	8	7	9			

ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-13 International Journal of Information Technology and Electrical Engineering

	66.43		72.785	32.622	60.828	52.536
P_{G12}	83	77.385	1	4	6	4
	83.18	38.834	52.633	70.008	30.454	69.376
P _{G13}	48	4	7	2	7	9
	26.10	47.512		17.664	40.871	51.747
P _{G14}	92	1	41.729	3	5	3
	53.57	17.022	39.698	51.693	21.252	28.376
P _{G15}	6	7	5	9	4	6
	11866	107514	104658		105918	101436
cost	80	0	0	955680	0	0

Table 4.8 Generations and cost of generations for various loads

Thus above tabular columns show the optimal scheduling of fifteen thermal generating plants along with their cost for real power generation. The graph shows the relation for time in 24 hrs for different load demands the cost of generating units to generate real power to meet load demands. Fig 2 shows the relation for time in hrs and cost of power generations of six units for 24 hrs to meet the load demand.

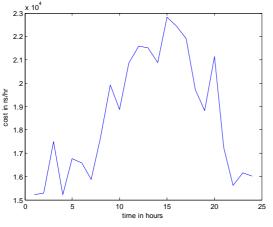


Fig 2. Time vs Cost of real power generations of all units

V. CONCLUSION:

This paper deals with optimal generation scheduling in thermal power plant using differential evolution programming method. The equality and inequality constraints are considered while optimizing generation scheduling. In both case studies it is clear that all generators run within its constraint limits for optimum generation allocation or economic load dispatch. If the generators do not run in its constraint limits whether below its minimum generation capacity or above its maximum generation capacity economic load dispatch is not possible. Therefore economic load dispatch is possible only if all generating units run within its constraints limits. This paper concludes that scheduling through Differential Evolution programming technique is economical compared to analytical solution technique.

References

[1] O. Mohammad, D. Park, R. Merchant, T. Dinh, C. Tong, A. Azeem, J. Farah, K. Cheung, "Practical Experiences for Load Forcasting ", IEEE Transactions on Power Systems, vol. 10, no.1, Feb. 1995.

[2] K.Srikrishna et al, "Analytical approach to solution of coordination equation for generating scheduling", pp254-257, vol.67, June 1987, Journal of the Institute of Engineers (India).

[3] K Srikrishna et al, "New graphical method for optimum power generation", pp148-151, vol.61, Dec 1980, Journal of the Institute of Engineers (India).

[4]. Kirchmayer L.K. "Economic Operation of Power Systems", John Willey and Sons, New York, 1958.

[5] C.Palanichamy et al, "Quick method to Optimize Generation Schedule", pp99-103, vol.69, Dec 1988, Journal of the Institute of Engineers (India).

[6] K Nagappa et al, "Analytical method to optimize generation schedule", pp240-242, vol.66, June 1986, Journal of the Institute of Engineers (India).

[7] K. Chandram, N. Subrahmanyam, and M. Sydulu "Brent Method for Dynamic Economic Dispatch with Transmission Losses", pp-16-22, Iranian journal of electrical and computer engineering, vol. 8, no. 1, winter-spring 2009.

[8] M.S Nagaraja "optimum generation scheduling for thermal power plants using artificial neural networks", International Journal of Electrical and Computer Engineering (IJECE) Vol.1, No.2, December 2011, pp. 135-140.

[9] K. Senthil "Combined Economic Emission Dispatch using Evolutionary Programming Technique", IJCA Special Issue on "Evolutionary Computation for Optimization Techniques" ECOT, 2010, pp-62-66.

About the authors:

¹**Dr** N Visali is completed Phd from JNTUA, Anathapur. She is presently working as Professor in Department of electrical and electronics engineering, JNTUACEP, Pulivendula. Her area of interest includes Economic load scheduling using optimization techniques, Controllers for FACTS Devices, optimization techniques in placement of capacitor, DG,

²**M.SURENDRANATHA REDDY** is completed M.Tech from JNTUA, Anathapur. He is presently working as Assistant Professor in the Department of Electrical & Electronics Engineering, Vaagdevi institute of technology & sciences, Proddatur,. His area of interest includes Economic load scheduling using optimization techniques, Controllers for FACTS Devices.

³**M.SATISH KUMAR REDDY** is pursuing M.Tech from JNTUACEP, Pulivendula. His area of interest includes optimization techniques in placement of capacitor, DG, optimization techniques.

Information Technology & Electrical Engineering

©2012-13 International Journal of Information Technology and Electrical Engineering