

©2012-13 International Journal of Information Technology and Electrical Engineering

1

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

Comparative Analysis of five Sorting Algorithms on the basis of Best Case,

Average Case, and Worst Case
1
Mohsin Khan,

2
Samina Shaheen,

3
Furqan Aziz Qureshi

1
Computing & Technology Department, IQRA University Islamabad Campus (IUIC)

2
Computing & Technology Department, ABASYN University Islamabad Campus (AIUC)

3
 Center for Emerging Science, Engineering &Technology, Islamabad

Email:
1
mohsin_btn@yahoo.com,

2
samnpg13@gmail.com,

3
furqan.aziz89@gmail.com

ABSTRACT

Sorting is one of the fundamental issues in computer science. Sorting problem gain more popularity, as

efficient sorting is more important to optimize other algorithms e.g. searching algorithms. A number of

sorting algorithms has been proposed with different constraints e.g. number of iterations (inner loop, outer

loop), complexity, and CPU consuming problem. This paper presents a comparison of different sorting

algorithms (Sort, Optimized Sort, Selection Sort, Quick Sort, and Merge Sort) with different data sets

(small data, medium data, and large data), with Best Case, Average Case, and worst case constraint. All six

algorithms are analyzed, implemented, tested, compared and concluded that which algorithm is best for

small, average, and large data sets, with all three constraints (best case, average case, and worst case).

Key words: Bubble Sort, Selection Sort, Quick Sort, Merge Sort, Optimized Bubble Sort, Enhanced selection Sort, Complexity

1. INTRODUCTION

An algorithm is a well-defined step by step

procedure to solve computational problems.

Algorithm takes an input, and provides output. We

can also say that algorithm is a tool or a sequence of

steps to solve computational problems [1]. To

design an algorithm various techniques and

methodologies are applied. Sorting algorithms are

design to order the data set into ascending or

descending orders. Sorting algorithms are very

important, as these algorithms are used to design

other algorithms e.g. searching algorithms. It is used

in many importing applications, since the

performance of sorting algorithm is very important

issue [2]. Due to this importance a number of

sorting algorithms has been presented each with

different constraints. Since we can formally define

sorting as:

Input: A sequence of data set having n numbers of

random order data 𝐴 = (𝑎1, 𝑎2, 𝑎3… , 𝑎 𝑛 − 1 ,
𝑎𝑛)

Output: A permutation of the input sequence 𝐴′ =
(𝑎′1, 𝑎′2, 𝑎′3… , 𝑎′ 𝑛 − 1 , 𝑎′𝑛), such that

𝑎′1 ≤ 𝑎′2 ≤ 𝑎′ ≤, … , ≤ 𝑎 𝑛 − 1 ≤ 𝑎𝑛)

Fig 1.1: Algorithms Diagram

For example if the given sequence is (59, 41, 31, 41,

26, 58); then the output sequence of sorting

algorithm will be (26, 31, 41, 41, 58, 59)[3].

As discussed above sorting is an intermediate and

an important part of managing data. Due to their

importance a number of sorting algorithms are

proposed e.g. bubble sort, selection sort, insertion

sort, quick sort, merge sort etc. Some of sorting

algorithms are very simple e.g. bubble sort; while

other are complex e.g. quick sort and merge sort.

Many researchers proposed some enhancement in

the above algorithms e.g. enhanced bubble sort,

optimized bubble sort, enhanced selection sort, and

enhanced quick sort etc. Remember that all sorting

algorithms work for a specific environment. Some

sorting algorithms works best on small data sets,

some works good in a large data set, while others

work good in a medium data set. The performance

of a sorting algorithm is described by their

complexity. Complexity of the algorithm is

Algorithms

Inputs Outputs

mailto:1mohsin_btn@yahoo.com
mailto:2samnpg13@gmail.com
mailto:furqan.aziz89@gmail.com

©2012-13 International Journal of Information Technology and Electrical Engineering

2

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

described by a standard notation big O as O (n);

Where Big O represents the complexity of the

algorithm, while n represents the number of

elements in the database.

In this paper, a comparison of most used sorting

algorithms Bubble sort, Selection sort, Insertion

sort, Quick sort, and merge sort are described on the

basis of their CPU time, Complexity, and number

Inner & Outer loop iterations. The remaining paper

is organized as: section 2 describes the criteria for

comparison, section 3 describes the algorithms used

in this simulation, section 4 describes the results of

simulation, and section 5 describes the conclusion

and future work.

2. Criteria of comparison:

a. Speed of sorting: Many algorithms have

same complexity but not have same speed.

The speed will be different in best case,

average case, and worst case. Since judge

the algorithm on factors best case, average

case, and worst case. Speed is also

considered when it takes values from

external storage devices or main memory

[4][5].

b. Memory: some algorithms take more

memory to sort, as they create a new array

or variables to store sorted elements.

c. Complexity: the effectiveness of an

algorithm is directly proportional to its

complexity[6].Sorting algorithms are

divided into two main category according to

their complexity: the O (n
2
) category and O

(n * log n) category.

3. Sorting Algorithms:

As described above sorting algorithms are divided

into two main categories. The bubble sort, insertion

sort, and selection sort falls in O (n
2
) category,

while quick and merge sort falls in O (n * log n)

category. The description of these algorithms is

described below.

3.1 Bubble sort:the basic sorting algorithm is

bubble sort. It compares two adjacent elements and

do swap operation if there is miss order found with

repeated steps. This is also called a comparison

sorting algorithm [7]. The original bubble sort does

more iteration even if the data set is sorted. The

complexity of bubble sort is O (n
2
) for all cases e.g.

best case, worst case, and average case. For this

bubble sort is used only for small number of data

set, for large and average data sets this algorithm is

impractical. The main advantage of bubble sort is

its simplicity, and ease of implementation; but the

code inefficient as do more iterations [8]. In bubble

sort algorithm the number of iterations is same for

all cases, since this algorithm is not practical. This

algorithm is enhanced in Enhanced Bubble Sort

algorithm, discussed next. The bubble sort

algorithm is described below:

Procedurebubble_Sort (Array, size)

1. vari, j, temporary

2 for i=1 to size

 a. for j = 1 to size

 b. if Array(j+1) > Array(j) then do

i. assign temporary = Array[j+1]

 ii. assign Array[j+1] = Array[j]

 iii. assign Array[j] = temporary

 iv. end if statement

 c. end for j loop

3. end for I loop

Original bubble sort algorithm is enhanced to

reduce the number of repetitions. The complexity of

enhanced bubble sort algorithm is same as bubble

sort for average and worst case, but in case of best

case its complexity becomes O (n), which is better

than original bubble sort. Also the inner loop

iteration is minimized as we run the iner loop to

size-1 times. This algorithm is described below:

ProcedureE_bubbleSort (Array, size)
1. vari, j, temporary

2 for i= 1 to size-1 step_size is 1

 a. for j = 1 to istep_size is 1

 b. if Array(j-1) > Array(j) then do

i. temporary = Array[j-1];

 ii. Array[j-1] = Array[j];

 iii. Array[j] = temporary;

 iv. end if statement

 c. end for j loop

3. end for I loop

3.2 Enhanced Bubble Sort:Bubble sort is

enhanced in [9]. This algorithm works as to find

maximum and minimum element in the array, and

then swap minimum element with the first element

and maximum element with the last element in

repeated steps. Remember that at every step

decrease the array size by two. The complexity of

©2012-13 International Journal of Information Technology and Electrical Engineering

3

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

Enhanced Bubble Sort algorithm is 𝑂(𝑛 log 𝑛) for

all cases e.g. best case, average case and worst case.

The number of swaps is n/2 for all cases but bubble

sort uses 0,n/2, and n swaps for each case e.g. best

case, average case and worst case respectively. The

Enhanced Bubble Sort Algorithm is described

below:

ProcedureEnhancedBubbleSort (Array, size,

firstindex, lastindex)
1. if size > 1 then

A. variables temp = 0,

B. variables maxcounter = lastindex

C. variable mincounter = firstindex

D. variable maximum = Array(lastindex)

E. variable minimum = Array(firstindex)

a. for a= firstindex to lastindex step 1

I. if Array(a) ≥ max then do

i. assign maximum =

Array(a)

ii. assign maxcounter = a

II. end of if

III. if Array(a) < minimum then do

i. assign minimum =

Array(a)

ii. assign mincounter = a

IV. end of if

b. end for (a loop)

F. if (firstindex==maxcounter) AND

(lastindex==mincounter) then

a. assign Array(firstindex) = minimum

b. assign Array(lastindex) = maximum

G. else

a. if (firstindex==maxcounter) AND

(lastindex ≠ mincounter) then do

I. assign temp := array(lastindex)

II. assign Array(lastindex) =

maximum

III. assign Array(firstindex) =

minimum

IV. assign Array(mincounter) =

temp

b. else

I. if (firstindex ≠ maxcounter)

AND (lastindex==mincounter)

then do

i. assign temp =

Array(firstindex)

ii. assign Array

(firstindex) =

minimum

iii. assign Array

(lastindex) = maximum

iv. assign Array

(maxcounter) = temp

II. else

i. assign temp =

Array(firstindex)

ii. assign

Array(firstindex) =

minimum

iii. assign

Array(mincounter) =

temp

iv. assign temp =

Array(lastindex)

v. assign Array(lastindex)

= maximum

vi. assign

Array(maxcounter) =

temp

III. end of if

c. end of if

H. end of if

I. assign firstindex = firstindex + 1

J. assign lastindex = lastindex – 1

K. assign size = size – 2

L. return EnhancedBubbleSort

(Array,size,firstindex,lastindex)

3. else

a. return array

4. end of if

3.3 Selection Sort: this algorithm is the improved

version of bubble sort and thus one of the simplest

types of sorting algorithms. Selection Sort is a

comparison sorting algorithm. This algorithm

search the minimum element in the unsorted array

or list and swap it to the first unsorted array

location, with repeated iteration steps. This

algorithm takes more time in finding minimum

element in the array list. The complexity of

selection sort algorithm is 𝑂(𝑛2)for all best,

average and worst cases [10][11]. This algorithm is

used for small list, but replaced by insertion sort [8].

Selection sort uses more comparisons but less

amount of data moving, since if data set has less

key but large data shairing then Selection is sort is

best [12].

Function Selection_Sort (Array, Size)

1. take Variable i and j

2. take variable minimum and temp

3. for i=0 to Size - 2

 a. assign min = i

 b. for j=i+1 to Size - 1

i. if Array(j) < Array(minimum)

 ii. assign minimum = j

 iii. End of if statement

 c. End of j loop

4. assign temp = Array(i)

5. assign Array(i) = Array(minimum)

6. assign Array(minimum) = temp

7. End of i loop

8. End of function

3.4 Enhanced Selection Sort: this algorithm is

proposed by JehadAlnihoud and Rami Mansi in

paper [9]. The Enhanced Selection Sort algorithm

works as by finding the maximum element in the

array and interchange it with the last element of the

array. The size of the array is decreased at each

©2012-13 International Journal of Information Technology and Electrical Engineering

4

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

iteration of the loop, which reduces the number of

swaps as compare to Selection Sort algorithm. The

Selection Sort performs O (n) number of swaps

while Enhanced Selection sort swapping is

dependent on the number of array elements. In the

best case it does not perform any swap, while

selection sort performs O (n) number of swaps.

Enhanced Selection Sort algorithm is described

below:

Function Enhanced_Selection_Sort(Array,

Size)
A. if size > 1 then

 1. variable index, temp, maximum

 2. assign index = size-1

 3. assign max = array(index)

 4. for i = 0 to size-2

 a. if Array(i) ≥ maximum then

i. assign maximum = Array(i)

 ii. assign index = i

 b. end if

 5. end i loop

 6. if index ≠ size-1 then

 a. assign temp = Array(size-1)

 b. assign Array(size-1) = maximum

 c. assign Array(index) = temp

 7. end if

 8. assign size = size-1

 9. return Enhanced_Selection_Sort (array , size)

B. else

 1. return array

C. end if

3.5 Insertion Sort: Insertion sort algorithm is a

simple and mostly used algorithm for small and

mostly sorted arrays lists. This algorithm uses two

same size array lists: one is sorted and one is

unsorted. In each step of sorting a minimum

element is found at unsorted list and placed it to the

sorted list at its proper location [11]. This algorithm

uses two arrays since more memory is used, also

more time consuming to find minimum element and

copy it to new sorted array. The complexity of this

algorithm is 𝑂 𝑛 for best case and 𝑂(𝑛2)for

average and worst cases [10]. This algorithm is

relatively used for small and average data sets in

place of bubble and selection sort algorithms.

Insertion Sort algorithm is twice faster than bubble

sort algorithm [8]. The insertion sort algorithm is

described below:

Procedure insertion_sort(array, length)

1. variablei, j ,tmporary

2. for i = 1 to length step 1

A. Assign j = i;

B. while (j > 0 && array[j - 1] > array[j]) do

a. Assign tmporary = array[j]

b. Assign array[j] = array[j - 1]

c. Assign array[j - 1] = tmporary

d. Assign j=j-1

C. end of while loop

3. end of for loop

3.6 Quick Sort: Quick sort is a divide and

conqueror algorithm uses recursion to sort the data

[13]. It is also called a comparison sort developed

by Tony Hoar [6][14]. It uses a programmer

selected pivot to sort the data list. Quick Sort

Algorithm is divided into two parts: the first part is

a procedure QUICK to use the reduction steps of

the algorithm, while second part uses the QUICK

procedure to sort the elements in the array list [13].

The complexity of quick sort in best and average

cases is 𝑂(𝑛 log 𝑛) and 𝑂 𝑛2 in worst case [10].

The average case time complexity is 𝑂(𝑛 log 𝑛)

which is a bit costly if used for large data sets, also

in worst case complexity is 𝑂 𝑛2 which make it

impractical for large worst data sets [15]. The Quick

Sort algorithm is described below:

Procedure quickSort(array[],left, right)

1. variable i,j, pivot

2. assign i=left

3. assign j=right

4. assign pivot = array[(i+j)/2]

 // partition

5. while i <= j do

A. while array[i] < pivot do

a. assign i=i+1

B. end of while

C. while array[j] > pivot do

a. assign j=j-1

b. end of while

D. if i <= j then do

a. variable temp

b. assign temp = array[i]

c. assign array[i] = array[j]

d. assign array[j] = temp

e. assign i=i+1

f. assign j=j-1

E. end of if

6. end of while

 // recursion

7. if left < j then do

A. quickSort(input, left, j)

8. if i < right then do

A. quickSort(input, i, right)

©2012-13 International Journal of Information Technology and Electrical Engineering

5

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

3.7 Enhanced Quick Sort: Quick Sort is enhanced

by Rami Massi in paper [16]. Enhanced Quick Sort

divide original array in three temporary arrays: the

positive array (pos_array), negative array

(neg_array), and frequent array (freq-array). This

algorithm uses three procedures: Scan, Move, and

Sort. As compare to quick sort, enhanced quick sort

is faster in case of large lists. the complexity of

enhanced quick sort is 𝑂 𝑛 in all cases e.g. best

case, average case, and worst case. The algorithms

of scan, move and sort procedure of enhanced quick

sort are described below:
Procedure Scan(array, size)

1 if size > 1 then

A. variable var, maximum, minimum, No_of_Pos,

No_of_Neg

B. assign max=array(0)

C. assign min:=array(0)

D. assign No_of_Pos=0

E. assign N_of_Neg=0

F. for a= 0 to size-1 step 1

a. if array(var) > maximum then do

i. assign max = array(var)

b. else

i. assign minimum = array(var)

c. end of if

d. if array(a) ≥ 0 then do

i. assign No_of_Pos=

No_of_Pos+1

e. Else

i. Assign No_of_Neg =

No_of_Neg+1

f. end of if

G. end of for

H. if minimum ≠ maximum then do

a. Move(array, size, No_of_Pos,

No_of_Neg, maximum, minimum)

I. end of if

2. end of if

Procedure Move(array, size, No_of_Pos,

No_of_Neg, maximum, minimum)

1. variable b,c,d,i

2. assign i=0

3. create a new array: Frequent_Array[size]

and initialize by the value (minimum-1)

4. if No_of_Pos> 0 then do

A. create a new

array:Positive_Array[maximum+1]

B. for b=0 to maximum step 1

a. assign Positive_Array(b) =

minimum-1

C. end of for

5. end of if

6. if No_of_Neg>0 then do

A. create a new array:

Negitive_Array[|minimum|+1]

B. for c= 0 to |min|+1 step 1

a. assign Negative_Array(c)= minimum-1

C. end of for

7. end of if

8. for d= 0 to size-1 step 1

A. if array(d) ≥ 0 then do

a. if

Positive_Array(array(d))==minimum-

1 then do

i. assign

Positive_Array(array(d))=arr

ay(d)

b. Else

i. Frequent_Array(i):=array(d)

ii. Assign i=i+1

c. end of if

B. Else

a. if

Negative_Array(|array(d)|)==minimu

m-1 then do

i. Negative_Array(|array(d)|)=

array(d)

b. Else

i. Assign Frequent_Array(i)=

array(d)

ii. Assign i= i+1

C. end of if

a. end of if

9. end of for

10. Sort(array, Negative_Array, Positive_Array,

Frequent_Array,…,

No_of_Neg, No_of_Pos, maximum, minimum, i)

Procedure Sort(array, Negative_Array, …,

Positive_Array, Frequent_Array,…,

No_of_Neg, No_of_Pos, maximum, minimum, i)

1. variable index,x,y

2. assign index=0

3. if No_of_Neg> 0 then do

A. for x= |minimum| downto 0 do

a. if Negative_Array(x) ≠ minimum-1

then do

i. assign array(index)=

Negative_Array(x)

ii. assign index= index+1

iii. for y= 0 to i step 1

iv. if

Frequent_Array(y)==array(

index-1) then

v. assign array(index)=

Frquent_Array(y)

vi. assign index= index+1

vii. end of if

viii. end of for

b. end of if

B. end of for

4. end of if

5. if No_of_Pos> 0 then do

A. for x= 0 to maximum do

a. if Positive_Array(x) ≠

minimum-1 then do

b. assign array(index)=

Positive_Array(x)

c. assign index= index+1

d. for y= 0 to i step 1

e. if Frequent_Array(y)==

array(index-1) then do

f. assign

array(index)=Frequent_Array(y)

g. assign index= index+1

h. end of if

i. end of for

j. end of if

B. end of for

6. end of if

©2012-13 International Journal of Information Technology and Electrical Engineering

6

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

3.8 Merge Sort: this is also a divide and conqueror

algorithm, with advantage of ease of merging lists

with new sorted lists. The worst case complexity of

merge sort is 𝑂(𝑛 log 𝑛), since could be used for

large and worst data sets.

Merge sort uses the following three steps to sort a

array list [8]:

1. Divide:if size of array is greater than 1, then

split it into two equal half size sub arrays.

2. Conquer: sort both sub arrays by recursion.

3. Merging:Combine both sorted sub arrays

into original size array. This will gives a

complete sorted array.

Merge sort is more suitable for large and worst case,

but it uses more memory as compare to other divide

and conqueror algorithms. Merge sort algorithm is

described below:

Procedure mergesort(a, b, low, high)

1. variable pivot

2. iflow<high then do

A. Assign pivot=(low+high)/2

B. mergesort(a,b,low,pivot)

C. mergesort(a,b,pivot+1,high)

D. merge(a,b,low,pivot,high)

3. end of if

Procedure merge(a,b,low,pivot,high)

1. Variavle h,i,j,k;

2. assign h=low

3. assign i=low

4. assign j=pivot+1;

5. while((h<=pivot)&&(j<=high)) do

A. if(a[h]<=a[j]) then do

a. assign b[i]=a[h]

b. assign h=h+1

B. else

a. assign b[i]=a[j]

b. assign j=j+1

C. ed of if

D. assign i=i+1

7. end of while

8. if(h>pivot) then do

A. for k=j to high step 1

a. assign b[i]=a[k]

b. assign i=i+1

9. else

A. for(k=h to pivot step 1

a. assign b[i]=a[k]

b. assign i=i+1

B. end of for

10. end of if

11. for k=low to high step 1

A. assign a[k]=b[k]

The complexity of all above sorting algorithms is

described in table 1.1.

4. Results:The simulation results for Comparisons

of Sorting Algorithms are run on Asus

EEEPC1001p, Simulation parameters for this

simulation are described in table 1.2.

Parameters Constraints

System Asus Eee PC 1001p, dual core, 1.67

processor,

1 GB Ram

Compiler Visual C++ 2008

Constraints Best Case, Average Case, Worst Case (Small

Data set, Medium data set, Large data set)

Best Case Array of 5 elements

Average data set Array of 100 elements

Large data set Array of 1000 elements

Table 1.2: Implementation Parameters

Fig 1.2: Inner Loop Number of Iterations

The results are described as number of inner loop

iterations, number of Outer loop Iterations, and

CPU processing time. The number of inner loop

iterations in all cases and all data sets are described

in table 1.3. Enhanced Selection sort gives best

results for inner loop iteration in all cases, while

Bubble Sort gives worst results for number of inner

loop iterations. E_Bubble Sort and Enhanced

Bubble Sort give double performance in case of

©2012-13 International Journal of Information Technology and Electrical Engineering

7

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

inner loop iteration as compare to bubble sort

algorithm; while Optimized bubble sort

performance is good as compare to enhanced

bubble sort. Merge Sort, Quick sort and Enhanced

Quick Sort gives good results for all cases, while

quick sort results are good as compare to enhanced

quick sort algorithm. Insertion sort results are one

half of enhanced bubble sort, optimized bubble sort,

and selection sort. Graphical representations of all

these results are also shown for each case (best case,

average case, and worst case) in fig 1.2.

Fig 1.3: Outer Loop Number of Iterations

The number of outer loop iterations in all cases and

on all data sets are described in table 1.4. Enhanced

Selection sort and Enhanced Quick Sort gives best

result in all cases for all data sets. The performance

of Quick sort and Enhanced Quick sort is good for

all cases all data sets.

Merge sort performance is good for large data sets

in worst case than Quick Sort and Enhanced Quick

sort. The insertion sort performance is better than

bubble sort in all cases. Overall Enhanced Selection

Sort performance in outer loop is best. The graphs

of number of outer loop iterations are shown in

figure 1.3.

According to operating system architecture we

cannot predict the exact CPU processing time of

any algorithm. As some system uses parallel

processing and multithreading processing. Although

CPU Processing time of each algorithm in each

cases are shown in table 1.5. we use ASUS EEE PC

1001p mini notebook for implementation of each

algorithm. Our results shows that enhanced

selection sort and enhanced quick sort take less

amount of time for all cases and data sets. Original

bubble sort in average takes more time than all

other algorithms. the graphs of CPU Processing

time is shown in figure 1.4.

Fig 1.4: CPU Time for all data sets

5. Conclusion

In this paper the comparison of five basic and 4

enhanced sorting algorithms are described. The

same number of elements is used for each data set

e.g. five elements for small data set, 100 elements

for medium data set and 1000 elements for large

data set. As discussed in the introduction sections

that each sorting has their own advantages and

disadvantages in terms of CPU processing time,

©2012-13 International Journal of Information Technology and Electrical Engineering

8

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

Complexity, number of Inner/Outer loops iteration,

and the most popular the best case, average case,

and worst case performance for small, medium and

large data sets. According to the literature review

and simulation results it is obtained that for large

data sets and worst conditions Enhanced Quick Sort

is best choice, Quick sort and Merge sort are may

also used for large data sets. For small data sets and

worst condition enhanced selection Sort and Quick

Sort are good choice. Bubble sort is good only for

small and best case, while Enhanced Bubble Sort is

good for both small &average data sets and Worst

conditions. Insertion Sort is good for small worst

condition as compare to bubble sort.

Keep this paper in mind, a new sorting algorithm

will be design for worst case large data sets in the

near future.

Sorting Algorithms Complexity

Algorithms Best Case Average Case Worst Case

Small

Data

Set()

Average

Data Set

Large

Data Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Bubble

Sort
𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐

E BS 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐

Enhanced

BS

𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧

Selection

Sort
𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐

Enhanced

SS

Insertion

Sort

𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐 𝐎 𝐧𝟐

Quick Sort 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧

Enhanced

QS

𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧 𝐎 𝐧

Merge

Sort

𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧 𝐎 𝐧𝐥𝐨𝐠𝐧

Table 1.1: Complexity of sorting algorithms [8][9][10][15][16]

Inner Loop Iterations

Algorithms Best Case Average Case Worst Case

Small

Data

Set()

Average

Data Set

Large

Data

Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Small

Data

Set()

Average

Data Set

Large Data

Set

Bubble Sort 25 9900 999000 20 9900 999000 20 9900 999000

Enhanced BS 10 4950 499500 10 4950 499500 10 49500 500541

Optimized

BS

4 4789 495584 4 4884 498510 7 4995 499475

Selection

Sort

10 4950 499500 10 4950 499500 10 4981 499889

Enhanced SS 4 99 999 4 99 999 4 99 999

Quick Sort 6 479 6982 6 376 7517 4 453 7424

Enhanced

QS

10 375 8143 4 420 8696 5 496 74210

Insertion

Sort

0 2141 258994 1 2331 254697 1 2399 258944

Merge Sort 5 414 8735 5 538 8701 7 545 42650

Table 1.3: Inner Loop Number of Iterations

©2012-13 International Journal of Information Technology and Electrical Engineering

9

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

Outer Loop Iterations

Algorithms Best Case Average Case Worst Case

Small

Data

Set()

Average

Data Set

Large

Data

Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Bubble Sort 5 100 1000 5 100 1000 5 100 1000

E_BS 5 100 1000 5 100 1000 5 100 1000

Enhanced BS 1 81 911 1 88 955 2 89 951

Selection Sort 4 99 999 4 99 999 4 99 999

Enhanced SS 1 1 1 1 1 1 1 1 1

Quick Sort 3 208 2702 3 205 2897 3 209 2862

Enhanced QS 4 161 899 2 168 2400 3 189 2379

Insertion Sort 4 99 999 4 99 999 4 99 999

Merge Sort 7 96 871 7 134 1271 5 132 1265

Table 1.4: Outer Loop Number of Iteration

CPU Timing

Algorithms Best Case Average Case Worst Case
 Small

Data

Set()

Average

Data Set

Large

Data

Set

Small

Data

Set()

Average

Data Set

Large

Data

Set

Small

Data

Set()

Average

Data Set

Large

Data Set

Bubble Sort 0.104 0.104 0.047 0.022 0.022 0.047 0.131 0.031 0.048

E_BS 0.029 0.031 0.041 0.015 0.031 0.031 0.033 0.031 0.047

Enhanced BS 0.031 0.022 0.041 0.015 0.029 0.032 0.039 0.032 0.039

Selection Sort 0.032 0.025 0.035 0.015 0.021 0.031 0.038 0.022 0.031

Enhanced SS 0.029 0.017 0.026 0.031 0.031 0.017 0.042 0.032 0.024

Quick Sort 0.016 0.011 0.031 0.021 0.027 0.031 0.030 0.037 0.041

Enhanced QS 0.025 0.006 0.019 0.02 0.023 0.032 0.029 0.029 0.037

Insertion Sort 0.019 0.017 0.031 0.019 0.016 0.016 0.035 0.030 0.031

Merge Sort 0.119 0.024 0.030 0.027 0.031 0.029 0.031 0.029 0.049

Table 1.5: CPU Processing Time Results

Bibliography

[1] Rupesh Srivastava & Pooja Varinder Kumar

Bansal, "Indexed Array Algorithm for Sorting,"

International Conference on Advances in

Computing, Control, and Telecommunication

Technologies, 2009.

[2] J. L. Bentley and R. Sedgewick, "Fast Algorithms

for Sorting and Searching Strings," ACM-SIAM

SODA ‟97, pp. 360-369, 1997.

[3] Thomas H. Cormen, Ronald L. Rivest, Clifford

Stein Charles E. Leiserson, "Introduction To

Algorithms," vol. 3rd Ed, pp. 147-150, 2009.

[4] Hina Gull, Abdul Wahab Muzaffar Sardar Zafar

Iqbal, "A New Friends Sort Algorithm," in IEEE

Second International Conference on Computer

Science and Information Technology, 2009.

[5] Ping Yu, Yan Gan You Yang, "Experimental Study

on the Five Sort Algorithms," in International

Conference on Mechanic Automation and Control

Engineering (MACE), 2011.

[6] C.A.R. Hoare, "Algorithm 64: Quick sort," Comm.

ACM , p. 321, July 1961.

[7] Levitin A, "Introduction to the Design and Analysis

of Algorithms," Addison Wesley, 2007.

[8] Pankaj Sareen, "Comparison of Sorting Algorithms

(On the Basis of Average Case)," International

Journal of Advanced Research in Computer Science

and Software Engineering, vol. 3, no. 3, pp. 522-

532, March 2013.

[9] Jehad Alnihoud and Rami Mansi, "An

Enhancement of Major Sorting Algorithms," The

International Arab Journal of Information

©2012-13 International Journal of Information Technology and Electrical Engineering

10

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 1
February, 2014

Technology, vol. 7, no. 1, pp. 55-62, January 2010.

[10] Dr. P. B. Zirra Ahmed M. Aliyu, "A Comparative

Analysis Of Sorting Algorithms On Integer And

Character Arrays," The International Journal Of

Engineering And Science (IJES), vol. 2, no. 7, pp.

25-30, July 2013.

[11] Parveen Kumarand Sahil Gupta Eshan Kapur,

"PROPOSAL OF A TWO WAY SORTING

ALGORITHM AND PERFORMANCE

COMPARISON WITH EXISTING

ALGORITHMS," International Journal of

Computer Science, Engineering and Applications

(IJCSEA), vol. 2, no. 3, pp. 61-78, June 2012.

[12] Salman Faiz Solehria, Prof. Dr. Salim ur Rehman,

Prof. Hamid Jan Sultanullah Jadoon, "Design and

Analysis of Optimized Selection Sort Algorithm,"

International Journal of Electric & Computer

Sciences IJECS-IJENS, vol. 11, no. 1, pp. 16-21,

February 2011.

[13] Mr. Imran Uddin, Mr. Simarjeet Singh Bhatia Ms.

Nidhi Chhajed, "A Comparison Based Analysis of

Four Different Types of Sorting Algorithms in Data

Structures with Their Performances," International

Journal of Advanced Research in Computer Science

and Software Engineering , vol. 3, no. 2, pp. 373-

381, February 2013.

[14] C. A. R. Hoare, "Quicksort," Computer Journal,

vol. 5, no. 4, pp. 10-15, 1962.

[15] Deepti Grover Sonal Beniwal, "Comparison Of

Various Sorting Algorithms: A review,"

International Journal of Emerging Research in

Management &Technology, vol. 2, no. 5, pp. 83-86,

May 2013.

[16] Rami Mansi, "Enhanced Quicksort Algorithm," The

International Arab Journal of Information

Technology, vol. 7, no. 2, pp. 161-166, April 2010.

Author Profile:

Mohsin Khan

He is a student of MS (Telecommunication and

Networking) at IQRA University Islamabad. He did

his BS (Telecommunication and Networking) from

COMSATS Institute of Information Technology,

Abbottabad in 2011. He is also working as Lecturer

at Lahore Garrison University. His research area

includes OFDMA, Vehicular Ad-Hoc Networks

(VANET), Network Security, and Programming

Algorithms.

SaminaShaheen

She is a student of MS (Computer Science) at

ABASYN University Islamabad Campus. She did

her BSCS from University of Punjab in 2005, and

MBA HRM from AIOU University at 2011. She is

currently working as Lecturer Computer Science at

Education Department Govt. of Punjab. Her

research area includes Mobile Ad-Hoc Networks

(MANET), Network Security, and Programming

Algorithms.

Furqan Aziz Qureshi

He is working as Lab Engineer at Center for

Emerging Sciences, Engineering and Technology,

Islamabad. He got his BS Degree in Computer

Engineering from COMSATS Institute of

Information Technology, Abbottabad in 2011.His

research area includes Digital Systems, Embedded

Systems, Programming Techniques and Algorithms.

