

©2012-14 International Journal of Information Technology and Electrical Engineering

9

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

Comparison between Proposed and Existing Algorithms for Deadlock

Avoidance and Recovery

1
Rabia Shakir,

2
Muhammad Ali Khan,

 3
Muhammad Adnan Khan

1, 2Federal Urdu University of Arts, Science and Technology, Islamabad, Pakistan
3 Schools of Engineering and Applied Sciences (SEAS), ISRA University, Islamabad, Pakistan

Email: 1rabi.khan91288@yahoo.com, 2alikhan09111@gmail.com, 3adnan_600@yahoo.com

ABSTRACT

The main objective of this paper is to provide concrete solution who constraints the system to move in safe state.

It also ensures that the system is not in unsafe state. Deadlock is one of the major disputes encountered in

operating system. It occurs due to ineffective allocation of resources to the processes. To prevent the system from

deadlock, existing algorithms and techniques for deadlock prevention, recovery and avoidance have been

analyzed. This paper offerings an efficient algorithm Shortest Job First with respect to Claim (SJFC) and Suspend

Process with Maximum Need (SPMN) strategy to prevent, avoid and recover a system from deadlock. It presents

a comparison between suggested and recent algorithms and strategies. Virtues and imperfections have also been

designated.

Keywords: Deadlock Avoidance, Deadlock Recovery, Deadlock Algorithms.

1. INTRODUCTION

1.1 Deadlock

 There are several resources in the system. These

resources acquired by many processes. A deadlock is a state

in which a process access a resource and waiting for another

resource acquired by another process. The system may drives

in a block state. This situation of a system is called

Deadlock.

Figure 1: Deadlock

 In Figure 1, there are two persons that want to hold

a single resource (a book). Both cannot access at the same

time, so deadlock may occur. “The deadlock conditions are

uninvited in any system meanwhile they violence the

system’s efficiency” [1].

1.2 System Model

“System model includes determinate states and

unallocated resources”[2].

Deadlock occurs between the processes. The set of finite

processes are P= {P0, P1, P2… Pn} and a set of finite

resources are R = {R1, R2… Rn}.

Every process allocates a resource. A process can:

i. Request a resource

ii. Use a resource

iii. Release a resource

1.3 Conditions for deadlock

 Deadlock can be considered in four necessary

conditions. If they occurs at the same time in the system then

deadlock occurs.

i. Mutual Exclusion

ii. Hold and wait

iii. No Preemption

iv. Circular wait

In mutual exclusion, at a time one process utilize

one resource .Multiple processes cannot access the same

resource at the same time. If a process request for a resource

allocated by another process, then the requesting process

must be delayed until the resource has been released. There

should be at least one non-sharable resource.

In Hold and wait, a process currently capture a

resource and waiting for another resource to be held by

another process.

In No Preemption, processes allocate the resource

and deallocate the resource when its task has been

completed.

In circular wait, there is a set of waiting processes { P0,

P1, P2,…,Pn } such that P0 is waiting for a resource accessed

by P1, where P1 is waiting for a resource accessed by

P2,…,Pn is waiting for a resource accessed by P0.

mailto:2alikhan09111@gmail.com
mailto:adnan_600@yahoo.com

©2012-14 International Journal of Information Technology and Electrical Engineering

10

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

Figure 2: Deadlock Occurrence Conditions

In figure 2, all above mentioned conditions arise.

Mutual Exclusion occurred because, at a time a single

resource held by a process .process A allocates a resource Y

while process B allocates a resource X.

Hold and wait condition occur because, a process

presently captured a resource and waiting for another

resource held by another process. Process owned by a

resource Y and waiting for a resource X preserved by

process B.

No preemption as a process can release a resource

when its task has been completed. Process A and process B

will release a resource Y and X when they accomplished

their jobs.

Circular wait because each process is waiting for a

resource occupied by another process.

1.4 Resolution of Deadlock

To resolve deadlock occurrence, the system must not fulfill

any one from the four conditions of deadlock occurrence.

2. RESOURCE ALLOCATION GRAPH

 “Processes and resources communicated in

Resource Allocation Graph”[3].

“The deadlock detection and resolution constantly wishes

that processes should be terminated. Due to this purpose

numerous issues must be focused.

1) Termination is more exclusive than wait.

2) Unwanted termination result in unused system resources.

3) Quantity of terminated jobs should be minimized”[4].

“System move in unsafe state in deadlock prevention and

avoidance”[5][6].

Resource Allocation Graph can be used to identify dead lock

in the system.

Identification of deadlock is easy by this Graph.

Resource Allocation Graph includes:

i. No of Processes P={P1, P2, ……, Pn}

ii. No of Resources R={Rm, Rm+1, …., Rm}

iii. Edges E= Links between processes and resources

2.1. Symbolic Notation in Resource Allocation Graph

Following notations are used for Resource Allocation

Graph

i. Process

ii. Resource

iii. Instances/Copies

2.2. Arrow Notation of Resource Allocation Graph

i. P R means [Request for resource]

ii. R P means [Allocation of resource]

2.3. Resource Allocation Graph Example

Assume there is a set of processes and resources.

Process P = {P1, P2, P3}

Resources R = {R1, R2, R3, R4}

Edges E = {P1 R1, R1 P2,

R4 P4 ,P4 R3, P3 R2 , R3 P2 , P2 R4

R2 P1, P3 R4, }

Figure 3: Resource Allocation Graph

2.4. Deadlock Identification in Resource Allocation Graph

If a resource allocation graph founds no cirscular path

then there is no deadlock. If it contains a cycle, then the

system is in deadlock state.

©2012-14 International Journal of Information Technology and Electrical Engineering

11

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

Figure 4: Deadlock Identification in Resource Allocation Graph

In Figure 4, there is only one deadlock is identified

because the process P2P4P2 creates a cycle.

3. WAIT FOR GRAPH (WFG)

“System moves in unsafe state when processes

communicates with each other”[7,8].

“In a Wait-For Graph (WFG)

 Process denoted by a circle;

 An Edge described by a link between nodes” [9].

Wait for Graph can be constructed through Resource

Allocation Graph. This graph contains just Processes and

Edges. It doesn’t contain resources.

Wait for graph is used to detect deadlock & then

deadlock can be resolved.

If two or more processes are combined and make a cycle

then there must be a deadlock in system.

Figure 5: Wait for Graph

There is a circular wait between the processes P2 and P4, so

deadlock occurs. Deadlock is between P2P4P2.

4. RESOLVING DEADLOCK

Methods for deadlock resolution can be described in two

main categories:

4.1. Deadlock Prevention

In deadlock prevention, resources can be allocated to the

processes before the task starts. During execution resources

cannot increased/decreased. Processes describes earlier that

which resources they have to allocate in upcoming.

“Through escaping cycles, the system can be eluded

form unsafe state”[10].

We assume that any one of the four necessary conditions

must not occur. If it occurs then we simply prevent circular

wait. To resolve deadlock, apply any one of the two cases:

i. Case-I : Resource Preemption

Resource should be preemptive. Deallocate a resource

from a one process and allocate this resource to another

process.

For instance; from the wait for graph, deallocate a

resource from P2. In this state only process can exist and

links can be removed that comes in and out from the process.

Figure 6: Resource Preemption

Figure 6 illustrates that there is no circular wait because

all the resource are preempted from P2. So there is no

deadlock.

Now the question arises, from which process a resource

should be preempted. The solution is a process whose burst

time is high or captured maximum resources then deallocate

some of its resources.

ii. Case-II : No-Preemption

©2012-14 International Journal of Information Technology and Electrical Engineering

12

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

First observe that which the common process among all

is. The processes who creates circular wait then try to

terminate them one by one.

In process termination, remove the specific process

as well as their linking edges. For example; from the wait for

graph, terminate P4. In this situation, a process and its linking

edges can be removed.

Figure 7: No Preemption

Again the issue is how to terminate a process. The

key is try to terminate a low priority, maximum remaining

burst time or have maximum resources process.

4.2 Deadlock Avoidance

“When a process request for a resource currently

held by another process, the deadlock avoidance algorithm

decides whether a requesting process have to wait or one of

the waiting process should be terminated”[11].

4.2.1. States

The system may goes from safe to unsafe state and

from unsafe to safe state. It totally depends upon carefully

allocation of resources between the processes.

Figure 8: States of Deadlock

i. Safe State: If the system is in safe state , it means

that there is no deadlock.

ii. Unsafe State: is the system is in unsafe state, then

the system must have deadlock.

4.2.1.1. Safe System Example

This example describes, whether the system is in

safe state or not.

Process Max Need Allocated Claim

P1 10 5 5

P2 4 2 2

P3 9 2 7

Total Resources = 12

Total Processes = 3

Total Allocated = 5+2+2 =9

Current Available = Total – Allocated

 = 12 – 9

 = 3

Then allocate the current available resources

carefully.

Allocate 2 from the 3 current available resources to

the process P2.

At this stage Current available = 3-2 =1

After completion the task, P2 releases 4 resources.

Current Available = 1

Released resources by P2 = 4

Now, Current Available = 4+1= 5

Now, check the claim of remaining two processes

whether it is equal, less or greater than current available

resources.

Allocate the Current available resources =5 to the

process P1 to fulfill its need.

P1 released 10 resources when its task has been completed.

Now current available =10

Finally allocate the resources to P3.

Its maximum need =9, Allocated = 2, claim=7.

Current available = 10-7=3

Assign 7 from the current available resources then

Max need = Allocate + claim

 9 = 2 + 7

 9 = 9

©2012-14 International Journal of Information Technology and Electrical Engineering

13

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

After completed its task, P3 releases 9 resources.

Each process successfully completed its task. The carefully

allocation of resources to P2P1P3 forces the system to move in

safe state.

4.2.1.2. Unsafe System Example

Process Max Need Allocated Claim

P0 10 5 5

P1 4 2 2

P2 9 3 6

System will drive in unsafe state if resources

allocated to the processes in this manner P1P0P2.

4.2.2. Banker’s Algorithm

In banker’s algorithm no of processes and resources

are limited.

 No of resources ≤ system’s resources

If no of resources allocated are greater than the

system’s resources, Algorithm will fail.

“Request = Demand for a process Pn. If a process requests m

processes then process Pn wishes for m instances of a

resource”[12].

Banker’s algorithm includes:

i. Mutual exclusion

ii. Hold and Wait

iii. No preemption

 “Dijkstra’s Banker’s algorithm is one of the efficient

deadlock avoidance algorithm that is currently used”[13, 14,

15, 16, 17].

4.2.2.1. Banker’s Algorithm example

Process
Max Need Allocated

A B C D A B C D

P0 1 10 10 3 0 1 2 3

P1 2 8 7 10 1 0 0 0

P2 2 14 10 15 1 4 2 3

P3 0 1 4 2 0 0 3 2

P4 1 9 7 7 1 7 3 6

Solution:

Matrix Need

Process
Claim

A B C D

P0 1 9 8 0

P1 1 8 7 10

P2 1 10 8 12

P3 0 1 1 0

P4 0 2 4 1

Claim = Max Need – Allocated

 Available =Total – Allocated

 = A B C D

 = 0 2 2 1

i. First Iteration:

Maximize the possibility that system should be in

safe state.

Check the process who have claim less than or equal to

available.

Allocate to P3 = 0 1 1 0

Current Available = (0 2 2 1) – (0 1 1 0)

 = 0 1 1 1.

P3 completed its task and releases 0 1 4 2 resources.

P3 terminated.

Now, current available = (0 1 1 0) + (0 1 4 2)

 = 0 2 5 3

ii. Second Iteration:

 Allocate the resources to P4 = 0 2 4 1

 Current Available = 0 2 5 3 – 0 2 4 1

 Now claim for P4

 After complete P4, it releases 1 9 7 7 resources.

 Current Available = 0 0 1 2 + 1 9 7 7

 = 1 9 8 9

 P4 Terminated.

iii. Third Iteration:

 Allocate the resources to P0= 1 9 8 0

 Current Available = 1 9 8 9 – 1 9 8 0

 = 0 0 0 9

 P0 terminated and released resources = 1 10 10 3

 Now,

 Current Available = 0 0 0 9 + 1 10 10 3

 = 1 10 10 12

iv. Fourth Iteration:

 Assign to P1 = 1 18 7 10

 Current Available = 0 2 3 2

 P1 will release resources = 2 8 7 10

©2012-14 International Journal of Information Technology and Electrical Engineering

14

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

 Now,

 Current Available = 2 10 10 12

 P1 Terminated.

v. Fourth Iteration:

 Assign to P2 = 1 10 0 12

 Current Available = 1 0 2 0

 P2 released resources = 1 10 8 12

 Now,

Current available = 1 0 2 0 + 1 10 8 12

 = 3 14 12 13

P2 terminated.

Solution to be system in safe state is

P3P4P0P1P2 or P3P4P0P2P1

5. PROPOSED ALGORITHM

5.1. SJF w.r.t. Claim (SJFC)

This algorithm forces to assign the resource to

process who have shortest burst time and claim.

In Shortest Job First w.r.t Claim (SJFC) technique includes

 Arrival time (A.T)

 Burst time claim (B.T)

 Allocated resources

 Maximum need of a process

5.2. Conditions for solving Algorithm

i. Check the process with shortest A.T.

ii. If two or more processes have same A.T then

check its Burst Time.

iii. If processes have different A.T then find the

process with shortest burst time.

iv. Now assign the resource to the process whose

claim is Shortest.

5.3. System is in safe state or not

Process
Max

Need
Allocated Claim B.T A.T

P0 11 6 5 0.5 0.1

P1 5 3 2 0.2 0.1

P2 10 7 3 0.3 0.2

Total Resources = 18

Allocated = 16

Current Available = Total resources – Allocated

 = 18 – 16

 = 2

Check the process with least arrival time:

 P0 and P1 have the least arrival time.

 Now check the process whose claim ≤ Current Available.

i. Iteration 1

Assign the 2 resources to P1 in order to fulfill its maximum

need.

Now, Current Available = 0

P1 completed its task and releases 5 resources.

P1 Terminated.

Now, Current Available = 5.

ii. Iteration 2

As Current Available = 5

There are two processes in memory:

Check the arrival time of P0 and P2.

P2 have highest A.T then P0 but P2 have shortest

Burst time.

Finally check the process whose claim is low than

current available need. Assign the resource to that process

whose claim and burst time is short.

Assign the resource to P2

Maximum need of P2 = 10

Allocated =7

Claim of P2 = 3

Current Available = 5

Assign 2 resources from current available to P2.

Now Current available= 3

Resources released by P2 =10

Now, Current Available = 10 +2 =12

P2 terminated.

iii. Iteration 3

At this stage, there is only one process in system, P0.

Max Need of P0 = 11

Allocated = 6

Claim = 5

Current Available = 12

Assign 5 from current available to process P0.

Resources Released by P0= Allocated + Claim

 = 6 + 5 =11

Now Current available = 12 – 5

©2012-14 International Journal of Information Technology and Electrical Engineering

15

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

 =7

P0 terminated

System is in safe state if resources allocated in this manner,

P1 P2 P0.

5.4. Key To check system is in Safe State

After termination of all processes:

Total Resources= Current Available + Released Resources

It ensures that system is in safe state.

Now, Total resources =18

Released = 11

Current resources = 7

Total resources = Released + Current Available

18 = 11 +7

18=18

5.5. Benefits of Proposed Algorithm

i. Ensures that the system is in safe state.

ii. Allocation of resources is convenient.

6. WEAKNESS OF CURRENT STRATEGY

Current system has following problems:

i. Problem in No-Preemption

In this strategy

 The process can be removed and the edges

associated with it are also removed.

 System stays in safe state but limited process fulfill

their needs.

 Process removed who creates deadlock

ii. Problem in Resource Preemption

In this strategy

 Process remains in the system but all edges

associated with it are removed.

 Again all the processes unable to fulfill their needs.

7. PROPOSED STRATEGY

This strategy will eliminate the issues addressed in

current strategy.

7.1. Suspend Process with Maximum Need (SPMN)

For instance there is a wait for graph; there are two

deadlocks in the figure.

Figure 9: Deadlock

Apply two steps to resolve this deadlock.

i. Step 1

Suggest the process with maximum resources i.e., P2.

Remove the outgoing edges of P2.

Figure 10: Remove edges from P2

ii. Step 2

P1, P3, P4 has completed its requirement, but there is still

P2 whose resources associated with P1 and P4. P3 also

terminate after completion in step 1.

Remove edges from P1 to P2 and P4 to P2 because they

completed their task in step 1.

©2012-14 International Journal of Information Technology and Electrical Engineering

16

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

Figure 11: Assign resources to P2

7.2. Benefits of Proposed strategy

i. Every process in a system fulfills its need.

ii. Deadlock eliminated in the early stage.

iii. Ensures that the system is in safe state.

8. CONCLUSION

This research explores an algorithm & strategy for

deadlock prevention & recovery. Proposed and existing

algorithms and strategies have been examined. Merits of

existing and demerits of current algorithm and techniques

have also been determined. After investigating the results it

is concluded that, the proposed algorithms SJFC for

deadlock prevention and SPMN for deadlock recovery is best

among existing algorithm.

REFERENCES

[1]. Michal arnay. Comparing Versions of Banker's

Algorithm for Deadlock Avoidance in Resource

Allocation Systems

[2]. Mark Lawley, Assistant Professor, Deadlock Avoidance

for Sequential Resource Allocation Systems. Hard and

Easy Cases,School of Industrial Engineering, Purdue

University

[3]. J. L. Peterson. Operating system concepts. Addison-

Wesley, 1981.

[4]. Pooja Chahar and Surjeet Dalal Deadlock Resolution

Techniques, International Journal of Scientific and

Research Publications, Volume 3, Issue 7, July 2013.

[5]. Kunwar Singh Vaisla, Menka Goswami, Ajit Singh,

“VGS Algorithm an Efficient Deadlock Resolution

Method”, International Journal of Computer

Applications, Vol.44, April 2012.

[6]. Terekhov, T. Camp, “Time efficient deadlock resolution

algorithms”, June 1998.

[7]. http://www.cs.colostate.edu/~cs551/CourseNotes/Banke

rs.html.

[8]. Elmagarmid A. K. A Survey of Distributed Deadlock

Detection Algorithms, sigmod record, Vol. 15, No.3, pp.

37-45.

[9]. http://www.cs.colostate.edu/~cs551/CourseNotes/Deadl

ock/WFGs.html

[10]. Swati Gupta, Deadlock Detection Techniques in

Distributed Database System, International Journal of

Computer Applications, Volume 74, July 2013.

[11]. Meenu Vijarania, Swati Gupta,Analysis for Deadlock

Detection and Resolution Techniques in Distributed

Database, International Journal of Advanced Research in

Computer Science and Software Engineering Analysis

for Deadlock Detection and Resolution Techniques in

Distributed Database , Volume 3,July 2013

[12]. Silberschatz A, Galvin PB, Gagne G. Operating System

Concepts 2012, 8th edition, Wiley India.

[13]. E.W. Dijkstra, “Cooperating sequential process,”

Technological University, Eindhoven, the Netherlands,

Tech.Rep.EWD-123.

[14]. A.N. Habermann, “Prevention of system deadlocks,”

communications of the ACM, vol.12, pp.373-377.

[15]. J.W. Havender, “Avoiding deadlock in multitasking

systems,” IBM Systems Journal, vol.2, pp.74-84.

[16]. R.C.Holt, “Some deadlock properties of computer

systems,” ACM Computing Surveys, vol. 4, pp.179-196.

[17]. T. Araki, Y. Sugiyama, and T. kasami, “Complexity of

the deadlock avoidance problem,” 2
nd

 IBM Symposium

on Mathematical Foundations of Computer Science,

pp.229-257.

AUTHOR PROFILES

1. Rabia Shakir is doing MS (CS) degree from FUUAST,

Islamabad, Pakistan. She is serving as a Lecture in the

department of Computer Science, Federal Urdu

University of Arts, Science and Technology, Islamabad,

Pakistan. She is also occupied as a Lecture in the

department of Computer Science, Islamabad Model

College for Girls (Post Graduate), G-10/4, Islamabad,

Pakistan, since 2011. Her research interests include

Operating System, DBMS, Software Development/

Engineering, Software Project Management and Data

Mining.

http://www.cs.colostate.edu/~cs551/CourseNotes/Bankers.html
http://www.cs.colostate.edu/~cs551/CourseNotes/Bankers.html
http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/WFGs.html
http://www.cs.colostate.edu/~cs551/CourseNotes/Deadlock/WFGs.html

©2012-14 International Journal of Information Technology and Electrical Engineering

17

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - -708X

Volume 3, Issue 3
June 2014

2. Muhammad Ali Khan is doing MS (CS) degree from

FUUAST, Islamabad, Pakistan. His research interests

include Operating System, DBMS, Software

Development / Engineering, SPM, and Data Mining.

3. Muhammad Adnan Khan received his MS (Electronic

Engineering) degree from IIU, Islamabad, Pakistan, in

2010. He is PhD scholar at ISRA University, Islamabad.

He has a number of publications in the field of

computational intelligence, receiver optimization, digital

signal processing, space time coding, digital

communication and operating system.

