

©2012-14 International Journal of Information Technology and Electrical Engineering

29

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

Performance Analysis of Short Term Scheduling Algorithms

1
Muhammad Usman,

2
Aamir Iqbal,

3
Ehsan Ahmed,

4
Shaukat Ghani,

5
Muhammad Adnan Khan

1,2,3,4
Federal Urdu University of Arts, Science and Technology, Islamabad, Pakistan

5,
School of Engineering and Applied Sciences (SEAS), ISRA University, Islamabad, Pakistan

Email:
1
musman@live.com,

2
aamircs@gmail.com,

3
ehsan225@gmail.com,

4
m.shoki@yahoo.com,

5
adnan_600@yahoo.com

ABSTRACT

Short term scheduling is the key function of a modern operating system. Since many jobs are entering into memory at a certain

instant, this needs to be handled efficiently. The main objective behind short term scheduling is to keep the main resource, CPU,

busy most of the time by executing more and more jobs. Many scheduling algorithms have been introduced like FCFS (Non-

Preemptive), SJF (Preemptive & Non-Preemptive), Priority (Preemptive & Non-Preemptive), FCFS (SJF) etc. for a

multiprogramming operating system. This paper presents a performance analysis between these existing scheduling algorithms.

The algorithms have been analyzed using difference evaluation models like deterministic and queuing model to determine which

algorithm has better performance.

Keywords: Short term scheduling, CPU scheduling, performance analysis

1. INTRODUCTION

1.1 Job and their types

A job is a program in execution. It is also called a

process or task. Jobs are of two types; CPU bound and I/O

bound. CPU bound jobs use their entire time quantum without

performing any I/O operations. Whereas, I/O bound jobs use

only a small amount of processor before performing I/O.

These jobs do not use up their entire time quantum.

CPU burst

I/O burst

Figure 1: CPU bound vs I/O Bound jobs

1.2 Job states

A job occupies different states during execution.

Figure-1 shows the different job states.
[1]

Figure 2: Job States Diagram

A job entered in job queue is assigned as new state. It

admits the ready state afterwards. Here another queue is

maintained. Scheduling techniques are applied here to assign

CPU to the job. From running state a job can go back to ready

state only when its quantum expires. But, if an I/O occurs in

the running state, the running job has been assigned waiting

state. Another queue is maintained in the waiting state. Here

the jobs waiting for I/O are queued. The ready state has been

assigned on completion of I/O. If the job completes the

exaction, it has been terminated. Jobs can only be terminated

from running state.

1.3 Reason behind short term scheduling

In early years, single user operating system can

execute only one job at a certain time and other jobs keeps on

waiting until the termination of first job and the main resource,

CPU, remained idle most of the time. Afterwards, the

multiprocessing scheme was introduced with the focus to

maximize CPU utilization.
[1][2]

 Hence, scheduling became a

key factor in CPU performance. Short term scheduling is a

core function of an operating system. Jobs are many in number

and they keep on coming as the computer remains

functional.
[3]

 Therefore, managing the jobs before execution is

a complexity. Several techniques are being introduced for

scheduling purposes.

1.4 Types of schedulers

Scheduling is the major task of operating system. Its

objective is to select the job from jobs queue and assign it to

CPU for processing. Schedulers have three types:

i. Job scheduler

ii. Swapper

iii. Short term scheduler

Job scheduler is also named as long term scheduler.

Its goal is to select a job from jobs queue and assign it to ready

queue for CPU scheduling. The primary aim of the job

scheduler is to provide a balance of mixed jobs, such as both

I/O bound and processor bound. Job scheduler also controls

the degree of multiprogramming.
[5]

mailto:adnan_600@yahoo.com
mailto:3umairbwp@gmail.com
mailto:4aamer.saleem@uol.edu.pk
mailto:adnan_600@yahoo.com

©2012-14 International Journal of Information Technology and Electrical Engineering

30

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

Figure 3: Job Queue Diagram

Swapper is also known as medium term scheduler. Its

target is to remove the job from the memory. Swapper tries to

reduce the degree of multi-programming. A job in running

may become suspended and cannot make any further progress.

It is the job of swapper to remove it from main memory and

secondary memory to clear space for more jobs.
[12]

Figure 4: Addition of Swapper in Queue Diagram

Short term scheduler is also named as CPU

scheduler. Its objective is to determine which job to move

from ready to running state. Short term scheduler is called

very frequently.

1.5 Context switching

Context switching is very important feature of

modern operating systems. When CPU switches from one job

to another, it must save the state of the already running job and

load the new job. The context switching is the technique used

to save and restore the job state in process control block

(PCB).

Figure 5: Process Control Block (PCB)

Context switch time is purely overhead. Context

switching can affect the performance significantly as

computers, these days, have a lot of general purpose and status

registers to be saved. Context switching times are highly

dependent on hardware support.
[2]

When a process is running a process control block is

created in the memory. All the necessary information of the

running job is saved in the PCB. When the control switches

from user to kernel mode, the context switcher saves the

content of all registers in the memory.

Figure 6: Context Switching Diagram

2. CRITERIA FOR CPU SCHEDULING

Various CPU scheduling techniques have been

introduced with different properties and characteristics. It is a

complex decision to apply a technique in a particular situation

for scheduling a job from ready queue. However, there are

some characteristics on which the comparison of different

techniques is based.
[8][9]

 The criteria for scheduling are based

on:

2.1 Utilization/efficiency: This is an indicator for

measuring how much CPU has been utilized.

2.2 Throughput: A certain amount of work done in an

instant of time is called throughput. The greater the number of

jobs completed, the more work is done by the system.
[11]

 A

better algorithm must have better throughput.

2.3 Turnaround time: The time taken by job from

submission to termination state is considered as turnaround

time. An algorithm with shorter turnaround time is considered

better.

2.4 Waiting time: It is the total of times spent in

ready queue.

2.5 Response time: The time consumed from new

state of a job to assigning it to CPU for the first time is

response time. Minimum response time makes an algorithm

better.

©2012-14 International Journal of Information Technology and Electrical Engineering

31

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

2.6 Fairness: It states that each job is treated equally with

fair policy in assigning CPU.

3. SHORT TERM SCHEDULING

ALGORITHMS

This subsection explains some common short term

scheduling algorithms, which are:

 First Come First Serve (Non-Preemptive)

 Shorter Job First (Non-Preemptive)

 Shorter Job First (Preemptive)

 Priority (Non-Preemptive)

 Priority (Preemptive)

 First Come First Serve (Shorter Job First)

3.1 First Come First Serve (Non-Preemptive)

First come first server is the simplest algorithm. It is

also named as first in first out (FIFO) algorithm. The jobs are

simply queued in order they reach and provided to CPU.

When CPU is idle, a job at the head of queue is forwarded to

CPU and it is removed from the ready queue. It is a non-

preemptive algorithm.
[7]

In FCFS algorithm, if multiple jobs are waiting for

execution in the ready queue and a slow processing job with

larger burst time is utilizing the CPU then due to the convoy

all fast jobs with shorter burst time waiting for CPU waits for

unnecessarily long time.
[6]

 This is called convoy effect. Thus

FCFS (Non-preemptive) is the troublesome for time sharing

systems.

3.2 Shorter Job First (Non-Preemptive)

It is a non-preemptive algorithm. This scheduling

algorithm attaches the length of the job’s next CPU burst with

each job. The job that has the smallest next CPU burst has

been assigned to CPU for processing. If the next CPU burst of

two jobs is same then FCFS technique is applied to select the

next job.
[14]

When a new job reaches in ready queue while

another job is already executing, burst time of the newly

reached job is compared with the remaining burst time of the

job executing currently. If the new job has shorter burst time

then SJF (non-preemptive) algorithm will continue to execute

the current job till its burst time completes, as it is non-

preemptive algorithm.

3.3 Shorter Job First (Preemptive)

It is preemptive algorithm. This algorithm associates

with each job the length of the job’s next CPU burst. The CPU

is assigned to the job that has the smallest next CPU burst. If

the next CPU bursts of two jobs are the same, FCFS algorithm

is used to select the job.
[14]

When a new job arrives in the ready queue while a

previous job is already executing, burst time of the newly

arrived job is compared with the burst time left of the

currently executing job. If the new job has shorter burst time

then SJF (preemptive) will preempt the currently executing

job.

3.4 Priority (Non-Preemptive)

It is non-preemptive algorithm. A priority is defined

with each job. The job with highest priority is assigned to the

CPU. If two jobs have same priority, jobs are scheduled in

FCFS order. Since it is a non-preemptive algorithm, the new

arrived job is placed simply at the beginning of the ready

queue.

A major problem with priority algorithm is that

sometimes these can leave some low priority job waiting for

CPU indefinitely. It is called starvation or blocking. A job

ready to run but waiting for the CPU is considered as blocked.

In heavily loaded systems, low priority jobs keeps on waiting

for long time.

Aging is the solution to this blocking or starvation. It

is a method of increasing the priority of jobs gradually that

waits in the ready queue for a long time.
[10]

 In this way their

priority becomes higher.

3.5 Priority (Preemptive)

It is a preemptive algorithm. A priority is defined

with each job. The job with highest priority is assigned to the

CPU. If two jobs have same priority, jobs are scheduled in

FCFS order.

When a new job arrives in the ready queue while a

previous job is already executing, burst time of the newly

arrived job is compared with the priority of currently

executing job. A priority (preemptive) algorithm will swap out

the currently executing job, if the priority of newly reached

job is higher than the priority of the already executing job.

Since, it is a priority scheduling algorithm therefore similar

starvation/blocking happens in it too and hence aging is

required to solve the issue.

3.6 First Come First Serve (Shorter Job First)

It is also named as round robin scheduling algorithm.

The FCFS (SJF) scheduling algorithm is developed for

timesharing systems. It is similar in function to FCFS

algorithm but a preemption factor is added to switch between

jobs. A time slice is introduced in FCFS (SJF). The ready

queue is treated as a round queue. The short term scheduler

goes around the ready queue, assigning the CPU to each job

for a time interval of up to one unit time slice.

If the time slice of coming jobs is shorter than the

frequently context switching is an overhead.
[13]

 It is the major

drawback of this scheduling algorithm.

4. MODELS OF ANALYTICAL EVALUATION

There are certain techniques for analysis of algorithm

regarding short term scheduling:

©2012-14 International Journal of Information Technology and Electrical Engineering

32

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

4.1 Deterministic model

It is a mathematical model in which output is

determined through already known values. Randomization

element for values is not included in this model.
[15]

 Due to

this factor, a given input will always produce the same output.

The following example data will be applied using

deterministic model on all the algorithms to find out the

average waiting time and turnaround times:

Jobs Burst Time Arrival Time Priority

J1 6.3 2.7 3

J2 1.8 1.8 1

J3 5.9 0.9 1

J4 1.1 2.6 0

J5 4.8 0.1 2

J6 0.2 0.1 2

J7 0.5 0.2 3

(Time measured in µ seconds)

4.1.1 FCFS (Non-Preemptive)

Example:

Jobs Burst Time Arrival Time

J1 6.3 2.7

J2 1.8 1.8

J3 5.9 0.9

J4 1.1 2.6

J5 4.8 0.1

J6 0.2 0.1

J7 0.5 0.2

Assumption: All jobs occur at time 0.

Gantt chart:

J1 J2 J3 J4 J5 J6 J7
0 6.3 8.1 14.0 15.1 19.9 20.1 20.6

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = 0 - 0 = 0 µs

WT of J2 = 6.3 - 0 = 6.3 µs

WT of J3 = 8.1 - 0 = 8.1 µs

WT of J4 = 14.0 - 0 = 14.0 µs

WT of J5 = 15.1 - 0 = 15.1 µs

WT of J6 = 19.9 - 0 = 19.9 µs

WT of J7 = 20.1 - 0 = 20.1 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 83.5/7 = 11.93 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 0 = 6.3 µs

TAT of J2 = 1.8 + 6.3 = 8.1 µs

TAT of J3 = 5.9 + 8.1 = 14.0 µs

TAT of J4 = 1.1 + 14.0 = 15.1 µs

TAT of J5 = 4.8 + 15.1 = 19.9 µs

TAT of J6 = 0.2 + 19.9 = 20.1 µs

TAT of J7 = 0.5 + 20.1 = 20.6 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT = 104.1/7 = 14.87 µs

4.1.2 SJF (Non-Preemptive)

Example:

Jobs Burst Time Arrival Time

J1 6.3 2.7

J2 1.8 1.8

J3 5.9 0.9

J4 1.1 2.6

J5 4.8 0.1

J6 0.2 0.1

J7 0.5 0.2

Assumption: All jobs reach at time 0.

Gantt chart:

J6 J7 J5 J4 J2 J3 J1
0.1 0.3 0.8 5.6 6.7 8.5 14.4 20.7

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = 14.4 - 2.7 = 11.7 µs

WT of J2 = 6.7 - 1.8 = 4.9 µs

WT of J3 = 8.5 - 0.9 = 7.6 µs

WT of J4 = 5.6 - 2.6 = 3.0 µs

WT of J5 = 0.8 - 0.1 = 0.7 µs

WT of J6 = 0.1 - 0.1 = 0 µs

WT of J7 = 0.3 - 0.2 = 0.1 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 28.9/7 = 4.13 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 11.7 = 18.0 µs

TAT of J2 = 1.8 + 4.9 = 6.7 µs

TAT of J3 = 5.9 + 7.6 = 13.5 µs

TAT of J4 = 1.1 + 3.0 = 4.1 µs

TAT of J5 = 4.8 + 0.7 = 5.5 µs

TAT of J6 = 0.2 + 0 = 0.2 µs

TAT of J7 = 0.5 + 0.1 = 0.6 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT =48.6/7 = 6.94 µs

4.1.3 SJF (Preemptive)

Example:

Jobs Burst Time Arrival Time

J1 6.3 2.7

J2 1.8 1.8

J3 5.9 0.9

J4 1.1 2.6

J5 4.8 0.1

J6 0.2 0.1

J7 0.5 0.2

Assumption: All jobs reach at time 0.

Gantt chart:

J6 J7 J5 J2 J4 J5 J3 J1
0.1 0.3 0.8 1.8 3.6 4.7 8.5 14.4 20.7

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = 14.4 - 2.7 = 11.7 µs

WT of J2 = 1.8 - 1.8 = 0 µs

©2012-14 International Journal of Information Technology and Electrical Engineering

33

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

WT of J3 = 8.5 - 0.9 = 7.6 µs

WT of J4 = 3.6 - 2.6 = 1.0 µs

WT of J5 = (0.8 - 0.1) + (4.7 - 1.8) = 3.6 µs

WT of J6 = 0.1 - 0.1 = 0 µs

WT of J7 = 0.3 - 0.2 = 0.1 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 24.0/7 = 3.43 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 11.7 = 18.0 µs

TAT of J2 = 1.8 + 0 = 1.8 µs

TAT of J3 = 5.9 + 7.6 = 13.5 µs

TAT of J4 = 1.1 + 1.0 = 4.1 µs

TAT of J5 = 4.8 + 3.6 = 8.4 µs

TAT of J6 = 0.2 + 0 = 0.2 µs

TAT of J7 = 0.5 + 0.1 = 0.6 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT =44.7/7 = 6.39 µs

4.1.4 Priority (Non-Preemptive)

Example:

Jobs Burst Time Arrival Time Priority

J1 6.3 2.7 3

J2 1.8 1.8 1

J3 5.9 0.9 1

J4 1.1 2.6 0

J5 4.8 0.1 2

J6 0.2 0.1 2

J7 0.5 0.2 3

Note: Lower value is treated as higher priority.

Gantt chart:

J6 J5 J4 J2 J3 J7 J1
0.1 0.3 5.1 6.2 8.0 13.9 14.4 20.7

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = 14.4 - 2.7 = 11.7 µs

WT of J2 = 6.2 - 1.8 = 4.4 µs

WT of J3 = 8.0 - 0.9 = 7.1 µs

WT of J4 = 5.1 - 2.6 = 2.5 µs

WT of J5 = 0.3 - 0.1 = 0.2 µs

WT of J6 = 0.1 - 0.1 = 0 µs

WT of J7 = 13.9 – 0.2 = 13.7 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 39.6/7 = 5.66 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 11.7 = 18.0 µs

TAT of J2 = 1.8 + 4.4 = 6.2 µs

TAT of J3 = 5.9 + 7.1 = 13.0 µs

TAT of J4 = 1.1 + 2.5 = 3.6 µs

TAT of J5 = 4.8 + 0.2 = 5.0 µs

TAT of J6 = 0.2 + 0 = 0.2 µs

TAT of J7 = 0.5 + 13.7 = 14.2 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT =60.2/7 = 8.6 µs

4.1.5 Priority (Preemptive)

Example:

Jobs Burst Time Arrival Time Priority

J1 6.3 2.7 3

J2 1.8 1.8 1

J3 5.9 0.9 1

J4 1.1 2.6 0

J5 4.8 0.1 2

J6 0.2 0.1 2

J7 0.5 0.2 3

Note: Lower value is treated as higher priority.

Gantt chart:

J6 J5 J3 J2 J4 J2 J3
0.1 0.3 0.9 1.8 2.6 3.7 4.7 9.7

J5 J7 J1
13.9 14.4 20.7

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = 14.4 - 2.7 = 11.7 µs

WT of J2 = (1.8 - 1.8) + (3.7 - 2.6) = 1.1 µs

WT of J3 = (0.9 - 0.9) + (4.7 - 1.8) = 2.9 µs

WT of J4 = 2.6 - 2.6 = 0 µs

WT of J5 = (0.3 - 0.1) + (9.7 - 0.9) = 9.0 µs

WT of J6 = 0.1 - 0.1 = 0 µs

WT of J7 = 13.9 – 0.2 = 13.7 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 38.4/7 = 5.49 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 11.7 = 18.0 µs

TAT of J2 = 1.8 + 1.1 = 2.9 µs

TAT of J3 = 5.9 + 2.9 = 8.8 µs

TAT of J4 = 0 + 1.1 = 1.1 µs

TAT of J5 = 9.0 + 4.8 = 13.8 µs

TAT of J6 = 0.2 + 0 = 0.2 µs

TAT of J7 = 0.2 + 13.7 = 14.2 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT = 59.0/7 = 8.43 µs

4.1.6 FCFS (Shorter Job First)

Example:

Jobs Burst Time Arrival Time Priority

J1 6.3 2.7 3

J2 1.8 1.8 1

J3 5.9 0.9 1

J4 1.1 2.6 0

J5 4.8 0.1 2

J6 0.2 0.1 2

J7 0.5 0.2 3

Gantt chart:

J6 J7 J5 J2 J4 J2 J4
0.1 0.3 0.8 1.8 2.8 3.8 4.6 4.7

J5 J3 J5 J3 J5 J3 J5
5.7 6.7 7.7 8.7 9.7 10.7 11.5

J3 J1 J3 J1 J3 J1
12.5 13.5 14.5 15.5 16.4 20.7

©2012-14 International Journal of Information Technology and Electrical Engineering

34

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

Waiting time (WT) of Ji = BT - Arrival time

WT of J1 = (12.5 - 2.7) + (14.5 - 13.5) + (16.4 - 15.5) = 12.1

µs

WT of J2 = (1.8 - 1.8) + (3.8 - 2.8) = 1 µs

WT of J3 = (5.7 - 0.9) + (7.7 - 6.7) + (9.7 - 8.7) + (11.7 - 10.7)

+ (13.5 - 12.5) + (15.5 - 14.5) = 9.8 µs

WT of J4 = (2.8 - 2.6) + (4.6 - 3.8) = 1 µs

WT of J5 = (0.8 - 0.1) + (4.7 - 1.8) + (6.7-5.7) + (8.7 - 7.7) +

(10.7 - 9.7) = 6.6 µs

WT of J6 = 0.1 - 0.1 = 0 µs

WT of J7 = 0.3 - 0.2 = 0.1 µs

Average waiting time (AvgWT) = Sum of WTs of J1 to J7/7

AvgWT = 30.6/7 = 4.37 µs

Turnaround time (TAT) of Ji = BT of Ji + Waiting time of Ji

TAT of J1 = 6.3 + 12.1 = 18.4 µs

TAT of J2 = 1.8 + 1 = 2.8 µs

TAT of J3 = 5.9 + 9.8 = 15.7 µs

TAT of J4 = 1.1 + 1 = 2.1 µs

TAT of J5 = 4.8 + 6.6 = 11.4 µs

TAT of J6 = 0.2 + 0 = 0.2 µs

TAT of J7 = 0.5 + 0.1 = 0.6 µs

Average TAT (AvgTAT) = Sum of TATs of J1 to J7/7

AvgTAT = 51.2/7 = 7.31 µs

4.2 Queuing model

In queuing model, waiting queues are analyzed. A

model is built to predict the lengths and waiting times of a

queue.
[16]

 Little’s formula is manipulated to predict the

required queue length and waiting time:

n = λw

In this formula: Average queue length is denoted by n

Average arrival time is denoted by λ

Average waiting time is denoted by w

In the instant case, apply above formula:

(Assuming λ = 0.5)

 S # Algorithm
Average waiting

time (w)

Average queue

length (n)

1 FCFS (NP) 11.93 5.97

2 SJF (NP) 4.14 2.07

3 SJF (P) 3.43 1.72

4 Priority (NP) 5.66 2.83

5 Priority (P) 5.49 2.75

6 FCFS (SJF) 4.37 2.19

4.3 Simulation model

It is the process of producing a prototype called

standard functional model to find its functioning in the real

world. Simulation modeling is, therefore, used to help

understand the particular outcomes. However, this model has

not been test in the paper.

4.4 Implementation model

The algorithm is tested in real mode in this model.

Random variations are keys to this model. However, this

model has not been implemented in this paper.

5. ANALYSIS CHART

 S # Algorithm Avg WT Avg TAT

1 FCFS (NP) 11.93 14.87

2 SJF (NP) 4.14 7.09

3 SJF (P) 3.43 6.39

4 Priority (NP) 5.66 8.60

5 Priority (P) 5.49 8.43

6 FCFS (SJF) 4.37 7.31

Figure 7: Comparison Graph of Average Waiting Time

(µs) and Average Turnaround Time of Scheduling Algorithms

6. CONCLUSION

An analysis of some short terms scheduling

algorithms has been presented in this paper. The algorithms

have been analyzed using deterministic and queuing model.

From our calculations it is evident that shorter job first

(preemptive) has the minimum waiting time and turnaround

time. Hence, it is the best algorithm among others when both

waiting time and turnaround time is considered.

REFERENCES

[1]. Silberschatz A, Galvin PB, Gagne G. Operating System

Concepts 2012, 8th edition, Wiley India.

[2]. Milan Milenkovic, “Operating Systems Concepts and

Design”, McGRAM-HILL, Computer Science Series,

second edition.

[3]. Sabrian F, CD Nguyen, S Jha D Platt, F Safaei.

Processing resource scheduling in programmable

networks. Computer communication 2005. 28:676-87

[4]. http://www.tutorialspoint.com/operating_system/os_proce

ss_scheduling.htm

[5]. Geol N. A Comparative Study of CPU Scheduling

Algorithms. International Journal of Graphics & Image

Processing 2012. 245:251.

[6]. Saleem U, Javed MY. Simulation of CPU Scheduling

Alogrithm. 0-7803-6355-8/00/$10.00@2000 IEEE.

©2012-14 International Journal of Information Technology and Electrical Engineering

35

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 3, Issue 3
June 2014

[7]. Tanenbaum AS. Modern Operating System 2008. Prentice

Hall.

[8]. Dhore A. Operating Systems. Technical Publications.

[9]. Bandarupalli SB, Nutulapati NP, Varma PS. A Novel

CPU Scheduling Algorithm–Preemptive & Non-

Preemptive. International Journal of Modern Engineering

Research (IJMER) 2012. 6:4484-90.

[10]. http://www.geekinterview.com/Interview-

Questions/Operating-System/Windows-Unix

[11]. Shrivastava M. Analysis and Review of CPU Scheduling

Algorithms. IJSER 2014. 3:132-34

[12]. http://www.tutorialspoint.com/operating_system/os_proce

ss_scheduling.htm

[13]. Omar MA, Zwaid MJ. CPU Scheduling: A scientific

research. University of Baghdad, Iraq.

[14]. Kumar A, Rohil H, Arya S. Analysis of CPU Scheduling

Policies through Simulation. IJRCSSE 2013. 5:1158-62.

[15]. http://thelawdictionary.org/deterministic-model/

[16]. http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSyste

ms/5_CPU_Scheduling.html

AUTHOR PROFILES

1. Muhammad Usman is doing MS (CS) degree from

FUUAST, Islamabad, Pakistan. He is serving as Lecture in the

department of Computer Science, Islamabad Model College

for Boys, I-8/3, Islamabad, Pakistan, since 2011. His research

interests include Operating System, DBMS, Software

Development/ Engineering, Software Project Management and

Data Mining.

2. Aamir Iqbal is doing MS (CS) degree from FUUAST,

Islamabad, Pakistan. He is serving as Programmer,

Department of MIS in Federal Urdu University or Arts

Science and Technology, Islamabad, Pakistan, since 2013. His

research interests include Visual Programming, Software

Engineering, Operating System and Software Quality

Management.

3. Ehsan Ahmed is doing MS (CS) degree from FUUAST,

Islamabad, Pakistan. He is serving as SSC (CS) in

Government High School, Thoha Khalsa, Kahuta, Pakistan,

since 2010. His research interests include Network

Programming, Network Security, Operating System and

Analysis of Algorithm.

4. Shaukat Ghani is doing MS (CS) degree from FUUAST,

Islamabad, Pakistan. His research interests include Wireless

Network, Network Security, Operating System and Analysis

of Algorithm.

5. Muhammad Adnan Khan received his MS (Electronic

Engineering) degree from IIU, Islamabad, Pakistan, in 2010.

He is PhD scholar at ISRA University, Islamabad. He has a

number of publications in the field of receiver optimization,

digital signal processing, space time coding, digital

communication and operating system.

