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ABSTRACT 
 

Fixed-point multiplication is frequently used in many DSP algorithms. This paper considers the design of a constant word-

length bit-parallel fixed-point multiplier based on CORDIC algorithm. Traditional bit-parallel multipliers are designed 

using ripple-carry or carry-save logic. A comparative analysis of our implementation results against three widely used 

constant word-length bit-parallel fixed-point multipliers viz. ripple carry array multiplier, carry-save array multiplier and 

Bough-Wooley multiplier is presented in this paper. The comparison is made with respect to resource utilization, timing 

and power dissipation. The implementation is carried out for varying input word-lengths ranging from 4 to 32-bit parallel 

operands. Further, the implementation targets three different FPGA families viz. Spartan-6, Virtex-4, and Virtex-5. Our 

implementation achieves a reduction in resource usage by at least 30 %; increase in speed by at least 5 % and reduction in 

dynamic power dissipation by at least 20 %. 
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1.  INTRODUCTION 
 

 Fixed point multipliers are frequently used in 

many digital signal processing (DSP) operations [1] [2] [3] 

[4]. They form an integral part of digital filters, an 

important class of Linear Time Invariant (LTI) systems 

designed to modify frequency response of the input signal. 

The goal of digital design is to maximize the performance 

while keeping the cost down [5]. In the context of general 

digital design, performance is measured in terms of the 

amount of hardware circuitry and resources required; the 

speed of execution (throughput and clock rate); and the 

amount of power dissipated. This demands for high speed, 

low area and low power realization of circuits used in these 

DSP systems [6] [7]. 

 

 Traditional DSP implementations have focused 

mainly on processor-oriented solutions where the design 

process mainly consists of developing the necessary high-

level code with some thought given to the underlying 

hardware architecture [8]. For high-speed applications some 

platform-based solutions such as application specific 

integrated circuits (ASIC) and structural ASICs have been 

used [2]. Recently field programmable gate arrays (FPGAs) 

have proven to be favored platform for VLSI design 

engineers. FPGAs offer many advantages over ASIC and 

programmable systems. The high speed and low power 

advantage of FPGAs over microprocessors is a sustainable 

trend for a wide variety of applications [9] [10] [11]. Some 

other advantages include design modifications post 

production, low non-recurring engineering (NRE) costs, re-

configurable design approach etc. [12] [13]. 

 

 CORDIC (COordinate Rotation DIgital Computer) 

[14] [15] is an iterative algorithm used for calculating 

various linear, trigonometric, hyperbolic and transcendental 

functions. The algorithm operates by rotating a vector, in  

 

 

 

linear, circular or hyperbolic coordinate systems, using only 

add and shift operations. CORDIC is unparalleled in its 

ability to encapsulate a diversity of math functions in one 

basic set of iterations [16]. Since the algorithm involves 

only add and shift operations it has very good hardware 

efficiency and a very minimal control overhead. 

 

 CORDIC algorithm has been applied to many 

different applications and has been used as a core arithmetic 

engine in many VLSI signal-processing implementations 

[17]. It has been used for computing the fast Fourier 

transform (FFT) [18] [19], the discrete cosine transform 

(DCT) [20], and the discrete Hartley transform [21]. A lot 

of work has focused on CORDIC based approaches for 

implementing various types of linear operations, including 

singular value decomposition (SVD) [22], Given’s rotations 

[23], recursive least square (RLS) filtering [24] etc. 

 

 The rest of the paper is as follows. Section II 

discusses bit-parallel fixed-point multiplication and the 

traditional designs being used. Section III briefly discusses 

the CORDIC algorithm, its operating modes and how it can 

be used to perform constant word-length fixed point 

multiplication. Section IV discusses the hardware structures 

that are derived from the algorithm. Unrolled and pipelined 

structures are considered. Section V carries out the actual 

synthesis and implementation. A part of the section is 

dedicated to error analysis intended to compare the 

accuracy of the CORDIC approach. Conclusions are drawn 

in section VI and references are listed at last. 

 

2. BIT-PARALLEL MULTIPLIERS 
 

 Bit-parallel multipliers process one whole word of 

the input sample each clock cycle and are ideal for high-
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speed applications. In this paper we consider three widely 

used bit-parallel fixed-point multipliers viz. parallel ripple-

carry array (RCA) multiplier, parallel carry-save array 

(CSA) multiplier and Baugh-Wooley (BW) multiplier. The 

operands in each case are assumed to be represented in 

fixed-point 2’s complement representation. Therefore, N-bit 

operands X and Y may be represented as: 

𝑿 = 𝒙𝑵−𝟏. 𝒙𝑵−𝟐𝒙𝑵−𝟑 … … 𝒙𝟏𝒙𝟎   (1) 

𝒀 = 𝒚𝑵−𝟏. 𝒚𝑵−𝟐𝒚𝑵−𝟑 … … 𝒚𝟏𝒚𝟎   (2) 

The most significant bit in each case is the sign bit with ‘0’ 

denoting a positive number and ‘1’ a negative number. The 

magnitude of these numbers lies in the range [-1, 1) and is 

given by: 

𝑿 = −𝒙𝑵−𝟏 + ∑ 𝒙𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊   (3) 

𝒀 = −𝒚𝑵−𝟏 + ∑ 𝒚𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊  (4) 

The value of the product P = X × Y is given by: 

𝑷 = −𝒑𝟐𝑵−𝟐 + ∑ 𝒑𝟐𝑵−𝟐−𝒊
𝟐𝑵−𝟐
𝒊=𝟏 𝟐−𝒊   (5) 

The product P may be represented as: 

𝑷 = 𝒑𝟐𝑵−𝟐. 𝒑𝟐𝑵−𝟑𝒑𝟐𝑵−𝟒 … … 𝒑𝟏𝒑𝟎   (6) 

In constant word length multiplication, the N-1 lower order 

bits in the product P are discarded, and the product is given 

by: 

𝒁 = −𝒛𝑵−𝟏 + ∑ 𝒛𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊   (7) 

The constant word length product Z may be represented as: 

𝒁 = 𝒛𝑵−𝟏. 𝒛𝑵−𝟐𝒛𝑵−𝟑 … … 𝒛𝟏𝒛𝟎  (8) 

The product Z, therefore, is not a full-precision product [5]. 

Based on this concept of constant word length 

multiplication, three traditional approaches to bit parallel 

fixed point multiplication have been used. These are briefly 

discussed below: 

 

2. 1. Parallel ripple-carry array multiplier 
 

 In parallel ripple-carry array multiplier, the carry is 

rippled to the adder to the left in the same row [5]. Thus, 

within a row each adder has to wait for the carry input to 

perform its computation. In other words there exists an 

intra-iteration constraint between any two adjacent adder 

nodes within a row, assuming there is no pipelining 

involved. Owing to this ripple-carry nature the critical paths 

involved are quite large which limits the speed of 

multiplication. Figure 1.a shows a 4-bit RCA fixed point 

multiplier. 

 

2. 2. Parallel Carry-Save Array Multiplier 
 

 In the carry-save array multiplier, the carry outputs 

are saved and used in the adder in the next row. In this case, 

the partial product is replaced by a partial sum and a partial 

carry, which are saved and passed to the next row. The 

advantage of carry-save addition is that the additions at 

different bit positions in the same row are now independent 

of each other and can be carried out in parallel, which 

essentially speeds up the addition phase of each cycle, and 

hence speeds up the multiplication [5]. The addition of the 

partial sum and the partial carry at the last step is performed 

by a vector merging adder (VMA), which may be 

implemented either as a ripple-carry adder or a carry-save 

adder. Figure 1.b shows a 4-bit CSA fixed point multiplier. 

 

2. 3. Bough-Wooley Multiplier 
 

 The difficulty of 2’s complement multiplication 

lies in handling the sign bits of the multiplicand and 

multiplier. An efficient way to overcome this problem is 

provided by the Bough-Wooley multiplication algorithm. 

The algorithm is an efficient way to handle the sign bits and 

helps in designing regular multipliers using 2’s complement 

operands. The Baugh-Wooley multiplication may be 

implemented as either a carry-ripple array or a carry-save 

array [5]. Figure 1.c shows a 4-bit BW multiplier 

implemented as a carry save array. 

 

 With 2’s complement representation a correct final 

result is guaranteed even if there is an intermediate 

overflow [5]. The magnitude of the number in (8) will 

always be less than 1. Since the magnitude of the filtering 

coefficients that determine the frequency behavior in DSP 

filtering operations is always less than 1, this type of 

representation is appropriate. 

 

 
Figure 1 Constant word-length multipliers. a) RCA multiplier. b) CSA multiplier. c) BW multiplier. 
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3. CORDIC ALGORITHM 
 

 CORDIC algorithm was first introduced by Volder 

[14] in 1959 as a technique for calculating the trigonometric 

functions required for real-time aircraft navigation. Since its 

introduction, the basic algorithm has been extended to 

evaluate a very rich set of functions from the one basic set 

of equations. Different versions of the CORDIC algorithm 

can be defined under the circular, hyperbolic, and linear 

coordinate systems [25]. These use a computation similar to 

that of the basic CORDIC algorithm, but can provide 

additional functions. The CORDIC engine can be either 

operated in the rotation mode or the vectoring mode. In 

rotation mode, the angle accumulator is initialized with the 

desired rotation angle. The rotation decision at each 

iteration is made to diminish the magnitude of the residual 

angle in the angle accumulator. The decision at each 

iteration is, therefore, based on the sign of the residual 

angle after each step. In the vectoring mode, the CORDIC 

rotator rotates the input vector through whatever angle is 

necessary to align the resultant vector with the horizontal 

axis. The result of the vectoring operation is a rotation 

angle and the scaled magnitude of the original vector. 

 

 It is possible to capture the vectoring and rotation 

modes of the CORDIC algorithm in all three coordinate 

systems using a single set of unified equations. These 

equations are given as: 

 

𝒙𝒊+𝟏 = 𝒙𝒊 − 𝒎𝝈𝒊𝒚𝒊𝟐
−𝒊    (9) 

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝝈𝒊𝒙𝒊𝟐
−𝒊    (10) 

𝒛𝒊+𝟏   =  {

𝒛𝒊 − 𝝈𝒊𝒕𝒂𝒏−𝟏(𝟐−𝒊)

𝒛𝒊 − 𝝈𝒊𝒕𝒂𝒏𝒉−𝟏(𝟐−𝒊)

𝒛𝒊 − 𝝈𝒊(𝟐−𝒊)

}         

𝒊𝒇 𝒎 =  𝟏
𝒊𝒇 𝒎 =  −𝟏

𝒊𝒇 𝒎 =  𝟎
 (11) 

Where, 

𝒎 =    {

+𝟏  𝒇𝒐𝒓 𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔
𝟎 𝒇𝒐𝒓  𝒍𝒊𝒏𝒆𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔

−𝟏 𝒇𝒐𝒓 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔
} 

 

And the value of σi will determine the direction of rotation 

in the next iteration. For linear mode (m = 0) the CORDIC 

equations will be: 

𝒙𝒊+𝟏 = 𝒙𝒊     (12) 

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝝈𝒊𝒙𝒊𝟐
−𝒊    (13) 

𝒛𝒊+𝟏 = 𝒛𝒊 − 𝝈𝒊(𝟐−𝒊)    (14) 

After n iterations the resultant vectors will be: 

𝒙𝒏 = 𝒙𝒔      (15) 

𝒚𝒏 = 𝒚𝒔 + 𝒙𝒔𝒛𝒔     (16) 

𝒛𝒏 = 𝟎      (17) 

If the initial value of y-vector (ys) is chosen to be zero then 

after n iterations the y-vector will contain the product of x 

and z vectors. The accuracy of the results depends upon the 

number of iterations n. 

 

 

4. CORDIC ARCHITECTURES 
 

 CORDIC algorithm can be implemented in a 

number of ways. A direct mapping of equations (12), (13) 

and (14) in hardware results in an iterative architecture. The 

iterative structure is bit-serial in nature resulting in slow 

structures. The iterative structure can be unrolled so that 

each of the n processing elements always performs the 

same iteration. Unfolded architectures have two advantages 

[26]. First, the shifters can be designed for fixed shifts, 

which means that they can be implemented in the wiring. 

Second, the ROM that holds the constant values for the z-

branch need not be updated after every iteration. These 

constants can be hardwired instead of requiring storage 

space. The entire CORDIC processor is thus reduced to an 

array of interconnected adder- subtraction units as shown in 

figure 2. 

 

 The unrolled structure can be easily pipelined by 

placing registers along the feed forward cut sets indicated 

by dotted lines in figure 2. Pipelining the structure reduces 

the critical path along the x, y and z branches enabling it to 

be operated at higher clock speeds. Alternately, pipelining 

may also be utilized to reduce the power dissipation in a 

system. The dynamic power dissipation in a CMOS circuit 

is given by: 

 

𝑷 = 𝜶. 𝑪𝒔𝒚𝒔𝒕𝒆𝒎 . 𝑽𝒔𝒖𝒑𝒑𝒍𝒚
𝟐 . 𝒇𝒄𝒍𝒌   (18) 

Where, 

 α is the switching activity; 

 Csystem is the total capacitance of the structure; 

 Vsupply is the supply voltage and 

 fclk is the clock frequency. 

 

 In a pipelined system the critical path is reduced 

such that the capacitance to be charged/discharged in a 

single clock cycle (Ccritical) is reduced by some factor, say 

M. If the same clock speed, fclk, is maintained then only a 

fraction of the original capacitance (
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴
) is being 

charged/discharged in the same amount of time that was 

previously needed to charge/discharge the capacitance 

Ccritical. In other words the supply voltage, Vsupply, can be 

reduced to β Vsupply, where β is a positive constant less than 

1. The power consumption for the pipelined structure is 

thus given by; 

𝑷𝒑𝒊𝒑 = 𝜶. 𝑪𝒔𝒚𝒔𝒕𝒆𝒎𝜷𝟐𝑽𝒔𝒖𝒑𝒑𝒍𝒚
𝟐 𝒇𝒄𝒍𝒌    (19) 

𝑷𝒑𝒊𝒑 = 𝜷𝟐𝑷     (20) 

The clock period is usually set equal to the maximum 

propagation delay in a circuit. Thus, for the original 

structure of figure 1; 

 

𝑻𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 =
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝑽𝒔𝒖𝒑𝒑𝒍𝒚−𝑽𝒕)
𝟐     (21) 
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Figure 2 Unrolled CORDIC multiplier with dotted pipeline registers

For the pipelined structure; 

𝑻𝒑𝒊𝒑 =
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴 𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚−𝑽𝒕)
𝟐     (22) 

 

Since the same clock speed is maintained for both the 

structures, the following quadratic equation can be used to 

find an appropriate value for β; 

 

𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐

=
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴
𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐
 

𝑴(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐

= 𝜷(𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐
   (23) 

 

5. SYNTHESIS AND IMPLEMENTATION 
 

5. 1. Methodology 
 

 The implementation in this work is targeted at 

three different FPGA families viz. Spartan-6, Virtex-4 and 

Virtex-5. Only LX series has been considered as it is apt for 

general logic applications. The CORDIC engine is designed 

in twelve stages. Since most of the computations are 

performed in the initial stages, a 12- staged CORDIC 

ensures a good accuracy while maintaining a fast 

convergence. The implementation is carried for an input 

operand length varying from 4 to 32 bits. The parameters 

considered are resource utilization, timing and dynamic 

power dissipation. Resource utilization is considered in 

terms of on chip FPGA resources being used. Timing refers 

to the clock speed of a design and is limited by the setup 

time of the input / output registers, propagation and routing 

delay associated with the critical path, clock to output time 

associated with the flip flops and the skew between the 

launch (input) register and the capture (output) register. The 

digital clock managers (DCMs) inherent to modern FPGAs 

have been used to map the clocking resources. This ensures 

that there is no problem of skew in the mapped structure. 

Timing analysis is done to provide information about the 

speed/throughput of the system. Dynamic power dissipation 

is related to charging and discharging of node capacitances 

along the different switching elements. To ensure a fair 

comparison, similar test benches have been used for all the 

implemented designs i.e. the input statistics remain the 

same in each case. The initial design entry is done using 

VHDL. The constraints relating to the period and offsets are 

duly provided and a complete timing closure is ensured. 

The design synthesis, mapping and translation are carried 

out in Xilinx ISE 12.4 [27] and the simulator database is 

then analyzed for on-chip resources, throughput and timing 

metrics. Power metrics are obtained using Xpower 

analyzer. 

 

5. 2. Experimental results 
 

Table 1 gives a comparison of the on chip resources utilized 

by different multipliers for an input word-length of 16 bits 

on Spartan-6 device. 

 

Table 1 Resource utilization for different multipliers 

On-chip 

resource 
RCA CSA BW CORDIC 

No. of Slice 

Registers 
32 32 32 97 

No. of slice 

LUTs 
943 637 583 364 

No. of occupied 

slices 
361 253 206 125 

 

Further analysis is carried out by implementing the 

different multiplier structures on different FPGA families 

for varying input word-lengths. The metrics obtained from 

the synthesizer database are plotted as a function of operand 

word-lengths and are presented in figures 3, 4 and 5. For 

simplicity we have considered only the occupied slices in 

each case. It is observed that there is a substantial reduction 

in the number of occupied slices for the CORDIC based 

multiplier. This is due to the inherent simple structure of the 

CORDIC algorithm that requires only additions and shift 

operations. 

 

 
Figure 3 Resource utilization on Spartan-6 FPGA
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Figure 4 Resource utilization on Virtex-4 FPGA 

 

 
Figure 5 Resource utilization on Virtex-5 FPGA 

 

 

 Table 2 provides a comparison of the maximum 

achievable clock rates post implementation for a word 

length of 16 bits. The target family is Spartan-6. The 

CORDIC based multiplier has a better timing closure in 

terms of the relationship between an external clock pad and 

its associated data-in or data-out pad. This is indicated by 

the offset-in and offset-out metrics from the timing database 

of the synthesizer. Also, the delays associated with the 

critical path is quite low in CORDIC and is primarily 

limited by the adder logic delay and the associated 

interconnects. Note that the analysis is done for a CORDIC 

multiplier that is implemented in twelve stages. A further 

reduction in the combinational delay and the associated 

route is possible by reducing the number of stages in 

CORDIC. This, however, will affect the accuracy of the end 

results. Pipelining the structure results in the reduction of 

the critical path and thus high clock frequencies. Further 

analysis is carried out by plotting the maximum achievable 

speed against the operand word lengths for different target 

families. The results are shown in figures 6, 7 and 8. Again 

for simplicity only the maximum achievable speeds have 

been considered. 

 

Table 2 Timing analysis for different multipliers on spartan-6 

Timing Parameter 
RCA CSA BW CORDIC PIPELINED CORDIC 

Maximum frequency (MHz) 30.67 50.182 50.117 53.4 115.234 

Minimum available offset-in (ns) 5.112 6.017 5.346 4.593 3.973 

Minimum available offset-out (ns) 11.727 11.851 10.95 10.831 10.474 

 

 
Figure 6 Maximum operating frequency on Spartan-6 

 

 
Figure 7 Maximum operating frequency on Virtex-4 

 

 
Figure 8 Maximum operating frequency on Virtex-5 

 

 Finally static and dynamic power dissipation for 

different structures is considered. Because an FPGA is 

programmable, it is only natural to look into minimizing the 

power dissipated. The static power dissipation in an FPGA 

consists of the device static power dissipation and the 

design static power dissipation. Although design static 

power is a very small percentage of the dynamic power 

dissipated, the device static power is device specific and is 

quite high. The dynamic power dissipation is a function of 
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the input voltage (V2), the clock frequency (fclk), the 

switching activity (α), the total capacitance seen by a 

particular node (CL) and the number of elements used (σ). 

The analysis was done for a constant supply voltage and at 

maximum operating frequency for each structure. To ensure 

a reasonable comparison the test vectors provided during 

post route simulation were selected to represent the worst 

case switching activity for data coming into the multiplier 

block. Same test benches were used for all the synthesized 

structures. The design node activity from the simulator 

database along with the power constraint file (PCF) was 

used for power analysis in the Xpower analyzer tool. Table 

3 shows the power dissipated in various resources for 

operand length of 16 bits. The targeted device is Spartan-6. 

The power dissipated in the clocking resources varies with 

the clock activity (clock frequency) as provided in the PCF. 

However, the capacitance CL, which needs to be driven at 

each toggling node, varies with the type, fan-out, and 

capacitance of the logic and routing resources used in the 

design. The CORDIC multiplier uses fewer resources and 

has a reduced fan-out of non-clocking nets. This is 

indicated in table 4 where the average fan-out of non-

clocking nets for different multipliers has been enlisted for 

a 16-bit operand word-length. The reduction in on-chip 

resources being utilized also leads to a reduction in the 

power dissipated in the logic. The reduction in the power 

dissipation in the signals and I/Os is indicative of the fact 

that the CORDIC based multiplier also tends to relax the 

signal transition rates for the duration of operation. 

 

Table 3 Power dissipation on spartan-6 device 

FPGA resource 
Power dissipated (mW) 

RCA CSA BW CORDIC PIPELINED CORDIC 

Clock 0.9 1.24 1.22 1.98 3.51 

Logic 2.34 1.14 1.71 0.8 0.64 

Signals 4.41 2.66 3.29 1.92 0.84 

I/Os 6.01 5.44 4.99 3.51 2.45 

Dynamic 13.66 10.48 11.21 8.21 7.44 

Quiescent 17.6 17.55 17.56 17.45 12.38 

Total 31.26 28.03 28.77 25.66 19.82 

 

Table 4 Average fan-out of non-clocking nets  

Multiplier design 
Average fan-out of non-

clock nets 

RCA 5.52 

CSA 4.75 

BW 4.78 

CORDIC 4.18 

PIPELINED CORDIC 3.76 

 

For pipelined CORDIC the structure may be operated at the 

original frequency if the application demands a reduction in 

power dissipation. An appropriate value of β can be 

obtained from (23) and the structure may be operated at a 

reduced voltage. The values indicated in table 3 are derived 

for a pipeline depth of 11 (i.e. M = 11) and a nominal 

frequency of the basic CORDIC multiplier (i.e. 53.4 MHz). 

This results in a β of 0.15, after applying threshold 

corrections. The pipelined structure when operated at the 

reduced voltage results in reduced static power dissipation 

as indicated in table 3. Further analysis is carried out by 

plotting the total power dissipation as a function of input 

word-length for different multiplier structures and for 

different FPGA families. The results are shown in figures 9, 

10 and 11. 

 

 
Figure 9 Power dissipation on Spartan-6 

 

 
Figure 10 Power dissipation on Virtex-4 
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Figure 11 Power dissipation on Virtex-5 

 

5. 3. Error analysis 
 

CORDIC is an iterative algorithm and the 

accuracy of the end results depend on the number of 

iterative stages. However, for operands with magnitudes 

less than unity the error introduced is negligible. Figure 12 

gives a comparison of the product values for a set of 16-bit 

input operands having same magnitude. The maximum 

error, when compared with the RCA multiplier is 3.1% and 

the average error is less than 3%. Note that the multiplier 

functionality is implemented in CORDIC by operating it in 

the linear mode and the results need not be scaled and can 

be directly read from the CORDIC engine. Thus there are 

no errors due to scaling. We have also plotted the 

percentage error variation against the operand word lengths. 

A set of random test vectors were generated for different 

word lengths and the average percentage error with respect 

to RCA multiplier was plotted against the word length. The 

results appear in the plot of figure 13. 

 

 
Figure 12 Product values for CORDIC multiplier 

 

 
Figure 13 Percentage error for varying word lengths 

 

6. CONCLUSIONS 
 

 This paper implemented a CORDIC based 

constant word length fixed-point multiplier by operating the 

CORDIC algorithm in the linear mode. The analysis and the 

experimental results carried out in this paper clearly 

indicate that a considerable improvement in performance is 

indeed achievable by using CORDIC based fixed-point 

multipliers. The results were compared against 

conventional fixed-point bit-parallel multipliers. Because of 

its simplicity in operation, the CORDIC based multiplier 

offers high-speed, low-power solution that is desirable in 

modern day DSP applications. Further, the structure can be 

easily pipelined for an increased operating frequency, 

thereby ensuring that the real-time throughput constraint 

that is inherent in many DSP systems is met. Alternately, 

the pipelined structure may be operated at reduced supply 

voltage resulting in low power hardware solutions. 
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