

©2012-15 International Journal of Information Technology and Electrical Engineering

25

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

A Constant Word-length Bit-Parallel Coordinate Rotation Digital Computer

based Multiplier for Fixed-Point Digital Signal Processing Operations

1Burhan Khurshid, 2 Roohie Naaz Mir
1Department of Computer Sciences & Engineering, NIT, Srinagar

2Department of Computer Sciences & Engineering, NIT, Srinagar

E-mail: 1burhan_07phd12@nitsri.net, 2naaz310@nitsri.net

ABSTRACT

Fixed-point multiplication is frequently used in many DSP algorithms. This paper considers the design of a constant word-

length bit-parallel fixed-point multiplier based on CORDIC algorithm. Traditional bit-parallel multipliers are designed

using ripple-carry or carry-save logic. A comparative analysis of our implementation results against three widely used

constant word-length bit-parallel fixed-point multipliers viz. ripple carry array multiplier, carry-save array multiplier and

Bough-Wooley multiplier is presented in this paper. The comparison is made with respect to resource utilization, timing

and power dissipation. The implementation is carried out for varying input word-lengths ranging from 4 to 32-bit parallel

operands. Further, the implementation targets three different FPGA families viz. Spartan-6, Virtex-4, and Virtex-5. Our

implementation achieves a reduction in resource usage by at least 30 %; increase in speed by at least 5 % and reduction in

dynamic power dissipation by at least 20 %.

Keywords: Fixed point arithmetic, DSP, ASIC, FPGA, CORDIC

1. INTRODUCTION

 Fixed point multipliers are frequently used in

many digital signal processing (DSP) operations [1] [2] [3]

[4]. They form an integral part of digital filters, an

important class of Linear Time Invariant (LTI) systems

designed to modify frequency response of the input signal.

The goal of digital design is to maximize the performance

while keeping the cost down [5]. In the context of general

digital design, performance is measured in terms of the

amount of hardware circuitry and resources required; the

speed of execution (throughput and clock rate); and the

amount of power dissipated. This demands for high speed,

low area and low power realization of circuits used in these

DSP systems [6] [7].

 Traditional DSP implementations have focused

mainly on processor-oriented solutions where the design

process mainly consists of developing the necessary high-

level code with some thought given to the underlying

hardware architecture [8]. For high-speed applications some

platform-based solutions such as application specific

integrated circuits (ASIC) and structural ASICs have been

used [2]. Recently field programmable gate arrays (FPGAs)

have proven to be favored platform for VLSI design

engineers. FPGAs offer many advantages over ASIC and

programmable systems. The high speed and low power

advantage of FPGAs over microprocessors is a sustainable

trend for a wide variety of applications [9] [10] [11]. Some

other advantages include design modifications post

production, low non-recurring engineering (NRE) costs, re-

configurable design approach etc. [12] [13].

 CORDIC (COordinate Rotation DIgital Computer)

[14] [15] is an iterative algorithm used for calculating

various linear, trigonometric, hyperbolic and transcendental

functions. The algorithm operates by rotating a vector, in

linear, circular or hyperbolic coordinate systems, using only

add and shift operations. CORDIC is unparalleled in its

ability to encapsulate a diversity of math functions in one

basic set of iterations [16]. Since the algorithm involves

only add and shift operations it has very good hardware

efficiency and a very minimal control overhead.

 CORDIC algorithm has been applied to many

different applications and has been used as a core arithmetic

engine in many VLSI signal-processing implementations

[17]. It has been used for computing the fast Fourier

transform (FFT) [18] [19], the discrete cosine transform

(DCT) [20], and the discrete Hartley transform [21]. A lot

of work has focused on CORDIC based approaches for

implementing various types of linear operations, including

singular value decomposition (SVD) [22], Given’s rotations

[23], recursive least square (RLS) filtering [24] etc.

 The rest of the paper is as follows. Section II

discusses bit-parallel fixed-point multiplication and the

traditional designs being used. Section III briefly discusses

the CORDIC algorithm, its operating modes and how it can

be used to perform constant word-length fixed point

multiplication. Section IV discusses the hardware structures

that are derived from the algorithm. Unrolled and pipelined

structures are considered. Section V carries out the actual

synthesis and implementation. A part of the section is

dedicated to error analysis intended to compare the

accuracy of the CORDIC approach. Conclusions are drawn

in section VI and references are listed at last.

2. BIT-PARALLEL MULTIPLIERS

 Bit-parallel multipliers process one whole word of

the input sample each clock cycle and are ideal for high-

mailto:burhan_07phd12@nitsri.net
mailto:xxx@yahoo.com

©2012-15 International Journal of Information Technology and Electrical Engineering

26

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

speed applications. In this paper we consider three widely

used bit-parallel fixed-point multipliers viz. parallel ripple-

carry array (RCA) multiplier, parallel carry-save array

(CSA) multiplier and Baugh-Wooley (BW) multiplier. The

operands in each case are assumed to be represented in

fixed-point 2’s complement representation. Therefore, N-bit

operands X and Y may be represented as:

𝑿 = 𝒙𝑵−𝟏. 𝒙𝑵−𝟐𝒙𝑵−𝟑 … … 𝒙𝟏𝒙𝟎 (1)

𝒀 = 𝒚𝑵−𝟏. 𝒚𝑵−𝟐𝒚𝑵−𝟑 … … 𝒚𝟏𝒚𝟎 (2)

The most significant bit in each case is the sign bit with ‘0’

denoting a positive number and ‘1’ a negative number. The

magnitude of these numbers lies in the range [-1, 1) and is

given by:

𝑿 = −𝒙𝑵−𝟏 + ∑ 𝒙𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊 (3)

𝒀 = −𝒚𝑵−𝟏 + ∑ 𝒚𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊 (4)

The value of the product P = X × Y is given by:

𝑷 = −𝒑𝟐𝑵−𝟐 + ∑ 𝒑𝟐𝑵−𝟐−𝒊
𝟐𝑵−𝟐
𝒊=𝟏 𝟐−𝒊 (5)

The product P may be represented as:

𝑷 = 𝒑𝟐𝑵−𝟐. 𝒑𝟐𝑵−𝟑𝒑𝟐𝑵−𝟒 … … 𝒑𝟏𝒑𝟎 (6)

In constant word length multiplication, the N-1 lower order

bits in the product P are discarded, and the product is given

by:

𝒁 = −𝒛𝑵−𝟏 + ∑ 𝒛𝑵−𝟏−𝒊
𝑵−𝟏
𝒊=𝟏 𝟐−𝒊 (7)

The constant word length product Z may be represented as:

𝒁 = 𝒛𝑵−𝟏. 𝒛𝑵−𝟐𝒛𝑵−𝟑 … … 𝒛𝟏𝒛𝟎 (8)

The product Z, therefore, is not a full-precision product [5].

Based on this concept of constant word length

multiplication, three traditional approaches to bit parallel

fixed point multiplication have been used. These are briefly

discussed below:

2. 1. Parallel ripple-carry array multiplier

 In parallel ripple-carry array multiplier, the carry is

rippled to the adder to the left in the same row [5]. Thus,

within a row each adder has to wait for the carry input to

perform its computation. In other words there exists an

intra-iteration constraint between any two adjacent adder

nodes within a row, assuming there is no pipelining

involved. Owing to this ripple-carry nature the critical paths

involved are quite large which limits the speed of

multiplication. Figure 1.a shows a 4-bit RCA fixed point

multiplier.

2. 2. Parallel Carry-Save Array Multiplier

 In the carry-save array multiplier, the carry outputs

are saved and used in the adder in the next row. In this case,

the partial product is replaced by a partial sum and a partial

carry, which are saved and passed to the next row. The

advantage of carry-save addition is that the additions at

different bit positions in the same row are now independent

of each other and can be carried out in parallel, which

essentially speeds up the addition phase of each cycle, and

hence speeds up the multiplication [5]. The addition of the

partial sum and the partial carry at the last step is performed

by a vector merging adder (VMA), which may be

implemented either as a ripple-carry adder or a carry-save

adder. Figure 1.b shows a 4-bit CSA fixed point multiplier.

2. 3. Bough-Wooley Multiplier

 The difficulty of 2’s complement multiplication

lies in handling the sign bits of the multiplicand and

multiplier. An efficient way to overcome this problem is

provided by the Bough-Wooley multiplication algorithm.

The algorithm is an efficient way to handle the sign bits and

helps in designing regular multipliers using 2’s complement

operands. The Baugh-Wooley multiplication may be

implemented as either a carry-ripple array or a carry-save

array [5]. Figure 1.c shows a 4-bit BW multiplier

implemented as a carry save array.

 With 2’s complement representation a correct final

result is guaranteed even if there is an intermediate

overflow [5]. The magnitude of the number in (8) will

always be less than 1. Since the magnitude of the filtering

coefficients that determine the frequency behavior in DSP

filtering operations is always less than 1, this type of

representation is appropriate.

Figure 1 Constant word-length multipliers. a) RCA multiplier. b) CSA multiplier. c) BW multiplier.

FAFAFA FA

FAFAFA FA

FAFAFA FA

FAFAFA FA

 0 X(3) Y(0) 0 X(2) Y(0) 0 X(1) Y(0) 0 X(0) Y(0)

 Z(3) Z(2) Z(1) Z(0)

 X(3) Y(1) X(2) Y(1) X(1) Y(1) X(0) Y(1)

X(3) Y(2) X(2) Y(2) X(1) Y(2) X(0) Y(2)

 X(3) Y(3) X(2) Y(3) X(1) Y(3) X(0) Y(3)

0

0

0

Y(3)

FAFAFA FA

FAFAFA FA

FAFAFA FA

FAFAFA FA

 0 X(3) Y(0) 0 X(2) Y(0) 0 X(1) Y(0) 0 X(0) Y(0)

 Z(3) Z(2) Z(1) Z(0)

 X(3) Y(1) X(2) Y(1) X(1) Y(1) X(0) Y(1)

 X(3) Y(2) X(2) Y(2) X(1) Y(2) X(0) Y(2)

 X(3) Y(3) X(2) Y(3) X(1) Y(3) X(0) Y(3)

Y(3)

VECTOR MERGING ADDER

HAHA HA

FAFA FA

FAFA FA

 X(3) Y(0) X(2) Y(0) X(1) Y(0)

 Z(3) Z(2) Z(1) Z(0)

 X(3) Y(1) X(2) Y(1) X(1) Y(1) X(0) Y(1)

 X(3) Y(2) X(2) Y(2) X(1) Y(2) X(0) Y(2)

 X(3) Y(3) X(2) Y(3) X(1) Y(3) X(0) Y(3)

VECTOR MERGING ADDER

1

 0 0 0 0

©2012-15 International Journal of Information Technology and Electrical Engineering

27

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

3. CORDIC ALGORITHM

 CORDIC algorithm was first introduced by Volder

[14] in 1959 as a technique for calculating the trigonometric

functions required for real-time aircraft navigation. Since its

introduction, the basic algorithm has been extended to

evaluate a very rich set of functions from the one basic set

of equations. Different versions of the CORDIC algorithm

can be defined under the circular, hyperbolic, and linear

coordinate systems [25]. These use a computation similar to

that of the basic CORDIC algorithm, but can provide

additional functions. The CORDIC engine can be either

operated in the rotation mode or the vectoring mode. In

rotation mode, the angle accumulator is initialized with the

desired rotation angle. The rotation decision at each

iteration is made to diminish the magnitude of the residual

angle in the angle accumulator. The decision at each

iteration is, therefore, based on the sign of the residual

angle after each step. In the vectoring mode, the CORDIC

rotator rotates the input vector through whatever angle is

necessary to align the resultant vector with the horizontal

axis. The result of the vectoring operation is a rotation

angle and the scaled magnitude of the original vector.

 It is possible to capture the vectoring and rotation

modes of the CORDIC algorithm in all three coordinate

systems using a single set of unified equations. These

equations are given as:

𝒙𝒊+𝟏 = 𝒙𝒊 − 𝒎𝝈𝒊𝒚𝒊𝟐
−𝒊 (9)

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝝈𝒊𝒙𝒊𝟐
−𝒊 (10)

𝒛𝒊+𝟏 = {

𝒛𝒊 − 𝝈𝒊𝒕𝒂𝒏−𝟏(𝟐−𝒊)

𝒛𝒊 − 𝝈𝒊𝒕𝒂𝒏𝒉−𝟏(𝟐−𝒊)

𝒛𝒊 − 𝝈𝒊(𝟐−𝒊)

}

𝒊𝒇 𝒎 = 𝟏
𝒊𝒇 𝒎 = −𝟏

𝒊𝒇 𝒎 = 𝟎
 (11)

Where,

𝒎 = {

+𝟏 𝒇𝒐𝒓 𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔
𝟎 𝒇𝒐𝒓 𝒍𝒊𝒏𝒆𝒂𝒓 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔

−𝟏 𝒇𝒐𝒓 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔
}

And the value of σi will determine the direction of rotation

in the next iteration. For linear mode (m = 0) the CORDIC

equations will be:

𝒙𝒊+𝟏 = 𝒙𝒊 (12)

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝝈𝒊𝒙𝒊𝟐
−𝒊 (13)

𝒛𝒊+𝟏 = 𝒛𝒊 − 𝝈𝒊(𝟐−𝒊) (14)

After n iterations the resultant vectors will be:

𝒙𝒏 = 𝒙𝒔 (15)

𝒚𝒏 = 𝒚𝒔 + 𝒙𝒔𝒛𝒔 (16)

𝒛𝒏 = 𝟎 (17)

If the initial value of y-vector (ys) is chosen to be zero then

after n iterations the y-vector will contain the product of x

and z vectors. The accuracy of the results depends upon the

number of iterations n.

4. CORDIC ARCHITECTURES

 CORDIC algorithm can be implemented in a

number of ways. A direct mapping of equations (12), (13)

and (14) in hardware results in an iterative architecture. The

iterative structure is bit-serial in nature resulting in slow

structures. The iterative structure can be unrolled so that

each of the n processing elements always performs the

same iteration. Unfolded architectures have two advantages

[26]. First, the shifters can be designed for fixed shifts,

which means that they can be implemented in the wiring.

Second, the ROM that holds the constant values for the z-

branch need not be updated after every iteration. These

constants can be hardwired instead of requiring storage

space. The entire CORDIC processor is thus reduced to an

array of interconnected adder- subtraction units as shown in

figure 2.

 The unrolled structure can be easily pipelined by

placing registers along the feed forward cut sets indicated

by dotted lines in figure 2. Pipelining the structure reduces

the critical path along the x, y and z branches enabling it to

be operated at higher clock speeds. Alternately, pipelining

may also be utilized to reduce the power dissipation in a

system. The dynamic power dissipation in a CMOS circuit

is given by:

𝑷 = 𝜶. 𝑪𝒔𝒚𝒔𝒕𝒆𝒎 . 𝑽𝒔𝒖𝒑𝒑𝒍𝒚
𝟐 . 𝒇𝒄𝒍𝒌 (18)

Where,

 α is the switching activity;

 Csystem is the total capacitance of the structure;

 Vsupply is the supply voltage and

 fclk is the clock frequency.

 In a pipelined system the critical path is reduced

such that the capacitance to be charged/discharged in a

single clock cycle (Ccritical) is reduced by some factor, say

M. If the same clock speed, fclk, is maintained then only a

fraction of the original capacitance (
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴
) is being

charged/discharged in the same amount of time that was

previously needed to charge/discharge the capacitance

Ccritical. In other words the supply voltage, Vsupply, can be

reduced to β Vsupply, where β is a positive constant less than

1. The power consumption for the pipelined structure is

thus given by;

𝑷𝒑𝒊𝒑 = 𝜶. 𝑪𝒔𝒚𝒔𝒕𝒆𝒎𝜷𝟐𝑽𝒔𝒖𝒑𝒑𝒍𝒚
𝟐 𝒇𝒄𝒍𝒌 (19)

𝑷𝒑𝒊𝒑 = 𝜷𝟐𝑷 (20)

The clock period is usually set equal to the maximum

propagation delay in a circuit. Thus, for the original

structure of figure 1;

𝑻𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 =
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝑽𝒔𝒖𝒑𝒑𝒍𝒚−𝑽𝒕)
𝟐 (21)

©2012-15 International Journal of Information Technology and Electrical Engineering

28

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

Figure 2 Unrolled CORDIC multiplier with dotted pipeline registers

For the pipelined structure;

𝑻𝒑𝒊𝒑 =
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴 𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚−𝑽𝒕)
𝟐 (22)

Since the same clock speed is maintained for both the

structures, the following quadratic equation can be used to

find an appropriate value for β;

𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐

=
𝑪𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝑴
𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝒌(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐

𝑴(𝜷𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐

= 𝜷(𝑽𝒔𝒖𝒑𝒑𝒍𝒚 − 𝑽𝒕)
𝟐
 (23)

5. SYNTHESIS AND IMPLEMENTATION

5. 1. Methodology

 The implementation in this work is targeted at

three different FPGA families viz. Spartan-6, Virtex-4 and

Virtex-5. Only LX series has been considered as it is apt for

general logic applications. The CORDIC engine is designed

in twelve stages. Since most of the computations are

performed in the initial stages, a 12- staged CORDIC

ensures a good accuracy while maintaining a fast

convergence. The implementation is carried for an input

operand length varying from 4 to 32 bits. The parameters

considered are resource utilization, timing and dynamic

power dissipation. Resource utilization is considered in

terms of on chip FPGA resources being used. Timing refers

to the clock speed of a design and is limited by the setup

time of the input / output registers, propagation and routing

delay associated with the critical path, clock to output time

associated with the flip flops and the skew between the

launch (input) register and the capture (output) register. The

digital clock managers (DCMs) inherent to modern FPGAs

have been used to map the clocking resources. This ensures

that there is no problem of skew in the mapped structure.

Timing analysis is done to provide information about the

speed/throughput of the system. Dynamic power dissipation

is related to charging and discharging of node capacitances

along the different switching elements. To ensure a fair

comparison, similar test benches have been used for all the

implemented designs i.e. the input statistics remain the

same in each case. The initial design entry is done using

VHDL. The constraints relating to the period and offsets are

duly provided and a complete timing closure is ensured.

The design synthesis, mapping and translation are carried

out in Xilinx ISE 12.4 [27] and the simulator database is

then analyzed for on-chip resources, throughput and timing

metrics. Power metrics are obtained using Xpower

analyzer.

5. 2. Experimental results

Table 1 gives a comparison of the on chip resources utilized

by different multipliers for an input word-length of 16 bits

on Spartan-6 device.

Table 1 Resource utilization for different multipliers

On-chip

resource
RCA CSA BW CORDIC

No. of Slice

Registers
32 32 32 97

No. of slice

LUTs
943 637 583 364

No. of occupied

slices
361 253 206 125

Further analysis is carried out by implementing the

different multiplier structures on different FPGA families

for varying input word-lengths. The metrics obtained from

the synthesizer database are plotted as a function of operand

word-lengths and are presented in figures 3, 4 and 5. For

simplicity we have considered only the occupied slices in

each case. It is observed that there is a substantial reduction

in the number of occupied slices for the CORDIC based

multiplier. This is due to the inherent simple structure of the

CORDIC algorithm that requires only additions and shift

operations.

Figure 3 Resource utilization on Spartan-6 FPGA

>>1

+/-

+/-

2
0

>>2

+/-

+/-

2
-1

σ0 σ1

>>3

+/-

+/-

2
-2

>>4

+/-

+/-

2
-3

σ2 σ3

>>n-1

+/-

+/-

2
-n+2

>>n

+/-

+/-

2
-n+1

σn-2 σn-1

xin

yin

zin

xout

yout

zout

2
4

7
0

3
6

1

6
3

0

2
0 5

4

2
5

3

5
6

0

1
7 4

4

2
0

6

5
3

4

1
6 4

4

1
2

5

2
7

8

4 8 1 6 3 2

N
O

.
O

F
 O

C
C

U
P

IE
D

S

L
IC

E
S

WORD-LENGTH

SPARTAN-6
RCA

CSA

BW

CORDIC

©2012-15 International Journal of Information Technology and Electrical Engineering

29

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

Figure 4 Resource utilization on Virtex-4 FPGA

Figure 5 Resource utilization on Virtex-5 FPGA

 Table 2 provides a comparison of the maximum

achievable clock rates post implementation for a word

length of 16 bits. The target family is Spartan-6. The

CORDIC based multiplier has a better timing closure in

terms of the relationship between an external clock pad and

its associated data-in or data-out pad. This is indicated by

the offset-in and offset-out metrics from the timing database

of the synthesizer. Also, the delays associated with the

critical path is quite low in CORDIC and is primarily

limited by the adder logic delay and the associated

interconnects. Note that the analysis is done for a CORDIC

multiplier that is implemented in twelve stages. A further

reduction in the combinational delay and the associated

route is possible by reducing the number of stages in

CORDIC. This, however, will affect the accuracy of the end

results. Pipelining the structure results in the reduction of

the critical path and thus high clock frequencies. Further

analysis is carried out by plotting the maximum achievable

speed against the operand word lengths for different target

families. The results are shown in figures 6, 7 and 8. Again

for simplicity only the maximum achievable speeds have

been considered.

Table 2 Timing analysis for different multipliers on spartan-6

Timing Parameter
RCA CSA BW CORDIC PIPELINED CORDIC

Maximum frequency (MHz) 30.67 50.182 50.117 53.4 115.234

Minimum available offset-in (ns) 5.112 6.017 5.346 4.593 3.973

Minimum available offset-out (ns) 11.727 11.851 10.95 10.831 10.474

Figure 6 Maximum operating frequency on Spartan-6

Figure 7 Maximum operating frequency on Virtex-4

Figure 8 Maximum operating frequency on Virtex-5

 Finally static and dynamic power dissipation for

different structures is considered. Because an FPGA is

programmable, it is only natural to look into minimizing the

power dissipated. The static power dissipation in an FPGA

consists of the device static power dissipation and the

design static power dissipation. Although design static

power is a very small percentage of the dynamic power

dissipated, the device static power is device specific and is

quite high. The dynamic power dissipation is a function of

4
4 1

1
0

4
2

9

1
6

2
0

5
4 1

3
3

4
5

2

1
5

4
5

3
9 9

7

4
0

4

1
5

4
6

4
7 1

2
7

3
6

3

1
1

2
3

4 8 16 32

N
O

.
O

F
 O

C
C

U
P

IE
D

S

L
IC

E
S

WORD-LENGTH

VIRTEX-4
RCA

CSA

BW

CORDIC

3
9 1

0
2

3
8

4

1
5

9
7

2
9 6
8

4
5

2

1
1

9
3

2
3 4
8

2
6

0

1
0

4
9

3
7 9
0

2
4

0

8
4

7

4 8 16 32

N
O

.
O

F
 O

C
C

U
P

IE
D

S

L
IC

E
S

WORD-LENGTH

VIRTEX-5 RCA

CSA

BW

CORDIC

7
2

.3
2

5
3

.1

3
0

.6
7

1
3

.9
5

6

9
7

.6
5

8
9

.5
4

5
0

.1
8

2

2
3

.2
2

8
5

.6
5

7
7

.0
5

5
0

.1
1

7

2
5

.3
3

8
6

.7
8

6
8

.0
2

5
3

.4

3
3

.4
5

2
4

3
.5

9

1
6

7
.8

6

1
1

5
.2

3
4

8
3

.4
5

4 8 16 32

M
A

X
.

C
L

O
C

K
 F

R
E

Q
U

E
N

C
Y

(M

H
Z

)

WORD-LENGTH

SPARTAN-6
RCA

CSA

BW

CORDIC

9
8

.7
1

7
6

.8

4
7

1
8

.2
6

9
7

.6
5

8
9

.5
4

5
0

.1
8

2

2
3

.2
2

8
5

.6
5

7
7

.0
5

5
0

.1
1

7

2
5

.3
3

8
6

.7
8

6
8

.0
2

5
3

.4

3
3

.4
5

2
4

3
.5

9

1
6

7
.8

6

1
1

5
.2

3
4

8
3

.4
5

4 8 16 32

M
A

X
.

C
L

O
C

K
 F

R
E

Q
U

E
N

C
Y

(M

H
Z

)

WORD-LENGTH

VIRTEX-4
RCA

CSA

BW

CORDIC

1
1

7
.7

6

9
0

.3

5
0

.0
0

5

2
4

.0
4

1
3

4

1
2

9
.2

7
1

.6
5

4
9

.5

1
4

3

1
3

6
.4

2

7
2

.2

5
0

.1
6

5

1
3

7
.5

9

1
2

9
.6

5

7
4

.1
6

5
6

.7
6

3
8

9
.5

1

2
6

1
.0

2

1
9

4
.8

5

1
4

5
.2

3

4 8 16 32

M
A

X
.

C
L

O
C

K
 F

R
E

Q
U

E
N

C
Y

(M

H
Z

)

WORD-LENGTH

VIRTEX-5
RCA

CSA

BW

CORDIC

©2012-15 International Journal of Information Technology and Electrical Engineering

30

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

the input voltage (V2), the clock frequency (fclk), the

switching activity (α), the total capacitance seen by a

particular node (CL) and the number of elements used (σ).

The analysis was done for a constant supply voltage and at

maximum operating frequency for each structure. To ensure

a reasonable comparison the test vectors provided during

post route simulation were selected to represent the worst

case switching activity for data coming into the multiplier

block. Same test benches were used for all the synthesized

structures. The design node activity from the simulator

database along with the power constraint file (PCF) was

used for power analysis in the Xpower analyzer tool. Table

3 shows the power dissipated in various resources for

operand length of 16 bits. The targeted device is Spartan-6.

The power dissipated in the clocking resources varies with

the clock activity (clock frequency) as provided in the PCF.

However, the capacitance CL, which needs to be driven at

each toggling node, varies with the type, fan-out, and

capacitance of the logic and routing resources used in the

design. The CORDIC multiplier uses fewer resources and

has a reduced fan-out of non-clocking nets. This is

indicated in table 4 where the average fan-out of non-

clocking nets for different multipliers has been enlisted for

a 16-bit operand word-length. The reduction in on-chip

resources being utilized also leads to a reduction in the

power dissipated in the logic. The reduction in the power

dissipation in the signals and I/Os is indicative of the fact

that the CORDIC based multiplier also tends to relax the

signal transition rates for the duration of operation.

Table 3 Power dissipation on spartan-6 device

FPGA resource
Power dissipated (mW)

RCA CSA BW CORDIC PIPELINED CORDIC

Clock 0.9 1.24 1.22 1.98 3.51

Logic 2.34 1.14 1.71 0.8 0.64

Signals 4.41 2.66 3.29 1.92 0.84

I/Os 6.01 5.44 4.99 3.51 2.45

Dynamic 13.66 10.48 11.21 8.21 7.44

Quiescent 17.6 17.55 17.56 17.45 12.38

Total 31.26 28.03 28.77 25.66 19.82

Table 4 Average fan-out of non-clocking nets

Multiplier design
Average fan-out of non-

clock nets

RCA 5.52

CSA 4.75

BW 4.78

CORDIC 4.18

PIPELINED CORDIC 3.76

For pipelined CORDIC the structure may be operated at the

original frequency if the application demands a reduction in

power dissipation. An appropriate value of β can be

obtained from (23) and the structure may be operated at a

reduced voltage. The values indicated in table 3 are derived

for a pipeline depth of 11 (i.e. M = 11) and a nominal

frequency of the basic CORDIC multiplier (i.e. 53.4 MHz).

This results in a β of 0.15, after applying threshold

corrections. The pipelined structure when operated at the

reduced voltage results in reduced static power dissipation

as indicated in table 3. Further analysis is carried out by

plotting the total power dissipation as a function of input

word-length for different multiplier structures and for

different FPGA families. The results are shown in figures 9,

10 and 11.

Figure 9 Power dissipation on Spartan-6

Figure 10 Power dissipation on Virtex-4

1
6

.3
4

1
9

.8
4

3
1

.2
6

6
6

.5
6

1
7

.3
2

2
1

.7
6 2
8

.0
3

5
2

.6
3

1
7

.5
4

2
1

.9
2 2
8

.7
7

5
7

.0
2

1
6 1

9
.6

4 2
5

.6
6

4
8

.4
3

1
4

.2
3

1
5

.3
7

1
9

.8
2

3
4

.6
1

4 8 16 32

T
O

T
A

L
 P

O
W

E
R

 D
IS

S
IP

A
T

E
D

(M

W
)

WORD-LENGTH

SPARTAN-6 RCA

CSA

BW

CORDIC

PIPELINED CORDIC

1
8

7
.7

9

1
9

2
.8

6

2
0

5
.2

9

2
5

5
.0

2

1
8

8
.0

2

1
9

4
.2

8

2
0

3
.0

9

2
3

3
.9

3

1
8

7
.9

8

1
9

3
.8

2

2
0

4
.7

7 2
3

6
.5

9

1
8

7
.0

2

1
9

1
.5

4

1
9

8
.5

6

2
1

6
.6

5

1
6

5
.5

4

1
6

8
.8

4

1
8

0
.2

4

1
9

2
.3

3

4 8 16 32T
O

T
A

L
 P

O
W

E
R

 D
IS

S
IP

A
T

E
D

(M

W
)

WORD-LENGTH

VIRTEX-4 RCA

CSA

BW

CORDIC

PIPELINED CORDIC

©2012-15 International Journal of Information Technology and Electrical Engineering

31

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

Figure 11 Power dissipation on Virtex-5

5. 3. Error analysis

CORDIC is an iterative algorithm and the

accuracy of the end results depend on the number of

iterative stages. However, for operands with magnitudes

less than unity the error introduced is negligible. Figure 12

gives a comparison of the product values for a set of 16-bit

input operands having same magnitude. The maximum

error, when compared with the RCA multiplier is 3.1% and

the average error is less than 3%. Note that the multiplier

functionality is implemented in CORDIC by operating it in

the linear mode and the results need not be scaled and can

be directly read from the CORDIC engine. Thus there are

no errors due to scaling. We have also plotted the

percentage error variation against the operand word lengths.

A set of random test vectors were generated for different

word lengths and the average percentage error with respect

to RCA multiplier was plotted against the word length. The

results appear in the plot of figure 13.

Figure 12 Product values for CORDIC multiplier

Figure 13 Percentage error for varying word lengths

6. CONCLUSIONS

 This paper implemented a CORDIC based

constant word length fixed-point multiplier by operating the

CORDIC algorithm in the linear mode. The analysis and the

experimental results carried out in this paper clearly

indicate that a considerable improvement in performance is

indeed achievable by using CORDIC based fixed-point

multipliers. The results were compared against

conventional fixed-point bit-parallel multipliers. Because of

its simplicity in operation, the CORDIC based multiplier

offers high-speed, low-power solution that is desirable in

modern day DSP applications. Further, the structure can be

easily pipelined for an increased operating frequency,

thereby ensuring that the real-time throughput constraint

that is inherent in many DSP systems is met. Alternately,

the pipelined structure may be operated at reduced supply

voltage resulting in low power hardware solutions.

REFERENCES

[1]. G. L. Narayan and B. Venkataramani, “ Optimization

Techniques for FPGA based Wave Pipelined DSP

Blocks,” IEEE Transc.Very Large Scale Integr.

(VLSI) syst., vol. 13, No. 7, pp. 783-792, July 2005.

[2]. M. A. Ashour and H. I. Saleh, “An FPGA

Implementation guide for some different types of

Serial-Parallel Multiplier Structures,”

Microelectronics Journal, vol. 31, pp. 161-168, 2000.

[3]. K. Compton, S. Hauck, “Reconfigurable Computing:

A survey of Systems and Software,” ACM

Computing Surveys, vol. 34, No. 2, pp. 171-210,

June 2002.

[4]. R. Tessier, W. Burleson, “Reconfigurable

Computing and Digital Signal Processing: Past,

Present and Future,” Programmable Digital Signal

Processors, Yu Wen Hue d, Marcel Dekker, pp. 147-

186, 2002.

[5]. Keshab K. Parhi, "VLSI Digital Signal Processing

Systems Design and Implementation," Wiley, 1999.

[6]. S. Shanthala and S. Y. Kulkarni, “VLSI Design and

Implementation of Low Power MAC Unit with

Block Enabling Technique,” European Journal of

Scientific Research, ISSN 1450-216X, vol. 30, No.

4, pp. 620-630, 2009.

[7]. K. H. Chen, Y. H. Chen and Y. S. Chu, “A Versatile

Multimedia Functional Unit Design using the

Spurious Power Suppression Technique,” in Proc.

IEEE Asian Solid-State Circuits conf., 2006, pp.

111-114.

[8]. Roger Woods, John McAllister, Gaye Lightbody and

Ying Yi, “FPGA-based Implementation of Signal

Processing Systems,” Wiley, 2008.

4
5

0
.8

7

4
5

4
.8

5

4
6

3
.1

9

5
1

2
.7

4

4
5

0
.3

4

4
5

3
.5

4
6

1
.1

9

4
8

5
.1

4

4
5

0
.6

6

4
5

3
.8

1

4
6

1
.7

9

4
9

1
.0

1

4
4

8
.6

7

4
5

2
.9

8

4
5

8
.0

7

4
6

8
.5

6

3
3

1
.5

4

3
3

5
.9

4

3
4

1
.4

2

3
7

6
.8

7

4 8 16 32

T
O

T
A

L
 P

O
W

E
R

 D
IS

S
IP

A
T

E
D

(M

W
)

WORD-LENGTH

VIRTEX-5 RCA

CSA

BW

CORDIC

PIPELINED CORDIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
R

O
D

U
C

T

OPERAND VALUES

PRODUCT VALUES FOR 16-BIT

OPERANDS
RCA

CORDIC

1.4

1.8

2.2

2.6

3

0 5 10 15 20 25 30 35

P
E

R
C

E
N

T
A

G
E

 E
R

R
O

R

WORD LENGTH

% ERROR V/S WORD LENGTH

©2012-15 International Journal of Information Technology and Electrical Engineering

32

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 4, Issue 1
February 2015

[9]. Z. Guo, W. Najjar, F. Vahid and K. Vissers, “A

Quantitative Analysis of the Speed up Factors of

FPGAs over Processors,” in Proc. Int. Symp. on

FPGAs, ACM Press, 2004.

[10]. K. Underwood “FPGAs vs. CPUs: Trends in Peak

Floating-Point Performance,” in Proc. Int. Symp. on

FPGAs, ACM Press, 2001.

[11]. G. Stitt, F. Vahid and S. Nematbakhsh, “Energy

Savings and Speed ups from Partitioning Critical

Software Loops to Hardware in Embedded systems,”

ACM Transc. Embedded Comput. Systems, vol. 3,

pp. 218-232, 2004.

[12]. R. Tessier and W. Burleson, “Reconfigurable

Computing for DSP: A Survey,” Journal of VLSI

Signal Processing, vol. 28, pp. 7-27, 2001, Kluwer

Academic Publisher.

[13]. T. J. Todman, G. A. Constantinides, S. J. E. Wilton,

O. Mencer, W. Luk and P. Y. K. Cheung,

“Reconfigurable Computing: Architecture and

Design Methods,” in IEEE Proc. Comput. Digit.

Tech., vol. 152, No. 2, March 2005.

[14]. J. E. Volder, “The CORDIC Trigonometric

Computing Technique,” IRE Trans. Electronic

Computers, vol. EC-8, no. 3, 1959, pp. 330–334.

[15]. J.S. Walther, “A Unified Algorithm for Elementary

Functions,” in Proc. Spring. Joint Comput.

Conference, vol. 38, 1971, pp. 379–385.

[16]. S. Hauck and A. Dehon, “Reconfigurable

Computing: The theory and Practice of FPGA-based

Computing,” Morgan Kaufmann series, 2008.

[17]. D. H. Timmerman, B. J. Hosticka, G. Schimdt, “A

Programmable CORDIC chip for Digital Signal

Processing Applications,” IEEE Journal of Solid-

State Circuits 26(9), September 1991.

[18]. A. M. Despain, “Very Fast Fourier Transform

Algorithms for Hardware Implementation,” IEEE

Transactions on ComputersC-28, May 1979.

[19]. A. M. Despain, “Fourier Transform Computers using

CORDIC Iterations,” IEEE Transactions on

Computers, 23 October 1974.

[20]. W. H. Chen, C. H. Smith, S. C. Fralick,” A fast

Computational Algorithm for the Discrete Cosine

Transform,” IEEE Transactions on Communications

C-25, September 1977.

[21]. L. W. Chang, S. W. Lee, “Systolic Arrays for the

Discrete Hartley Transform,” IEEE Transactions on

Signal Processing 29(11), November 1991.

[22]. J. R. Cavallaro, F. T. Luk,” CORDIC arithmetic for

an SVD processor,” Journal of Parallel and

Distributed Computing 5, 1988.

[23]. C. M. Rader, “VLSI systolic arrays for adaptive

nulling,” IEEE Signal Processing Magazine 13(4),

July 1996.

[24]. B. Haller, J. Gotze, J. Cavallaro, ”Efficient

Implementation of Rotation Operations for high-

performance QRD-RLS filtering,” Proceedings of

the International Conference on Application-Specific

Systems, Architectures and Processors, July 1997.

[25]. D. Ercegovac, T. Lang, “Digital Arithmetic,”

Morgan Kaufmann, 2004.

[26]. B. Khurshid, G. M. Rather and H. N. Shah,

“Performance Comparison of Non-redundant and

Redundant FPGA based Unfolded CORDIC

Architectures,” in International Journal of

Electronics and Communication Technology, vol. 3,

issue 1 pp 85-89, March 2012.

[27]. http://www.xilinx.com

AUTHOR PROFILES

Burhan Khurshid received the B.E. degree in Electronics

and Communications Engineering from the Kashmir

University, India, in 2008, the M.Tech degree in

Communications and IT from National Institute of

Technology, Srinagar, India in 2011. Currently he is

pursuing his PhD in System design in the department of

Computer Science and Engineering, NIT, Srinagar. His

research interests include Reconfigurable architectures,

Platform oriented solutions for arithmetic and DSP

algorithms, Architectural and technology dependent

optimizations targeted for FPGA platforms, etc. He has

many publications in the related field and is a student

member of IEEE. He is also a lifetime member of IETE.

Roohie Naaz Mir, received B.E. (Hons) in Electrical

Engineering from University of Kashmir (India) in 1985,

M.E. in Computer Science & Engineering from IISc

Bangalore (India) in 1990 and Ph D from University of

Kashmir, (India) in 2005. She is currently a Professor in the

department of Computer Science & Engineering at NIT

Srinagar, India. She is the co-author of many scientific

publications in international journals and conferences. Her

current research interests include reconfigurable computing,

security and routing in wireless ad-hoc networks and sensor

networks.

