Volume 4, Issue 5
October 2015

ITEE Journal

ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering
Cost Benefit Oriented Analysis for Designing Optimum Quality
Assurance Practices

IMd. Safaet Hossain, 2 Dr. M Rokonuzzaman

Department of Electrical Engineering and Computer Science

North South University
E-mail: safayeth@gmail.com

ABSTRACT

Quality assurance is a planned and systematic pattern of all actions necessary to provide confidence that an item or product
conforms to established technical requirements. In a competitive market, quality assurance is essential to reduce unwanted cost
of rework. Reducing cost by detecting and preventing defects at earlier stages of Software development phases, Software
Companies can maximize benefits in different stages of software development life-cycle. This paper focuses on detection and
prevention of defects at earlier stages of software development and designing optimum quality assurance practices to make
tradeoff between the quality and the cost. Resource wastage and rework in software production can be visible and analyzed thus
organization can reach the objective of the best balance between software quality vs cost and maximize net benefit.

Keywords: Software quality assurance, Defect Prevention, Process Improvement, Gross Benefit, Net Benefit twitter

1. INTRODUCTION

To get the real scenario about the software quality

assurance [21] practices we visited some software outsourcing
company in Bangladesh. These companies are offshore
software development and information and communication
technology (ICT) consulting firm which develops software
product, provides application and web development/solutions
and performs IT consultancy in various fields for many
businesses in Europe and other parts of the world. These
companies define itself by emphasizing central focus on
providing best services to valued customers. They offer
efficient solutions to valued customers by integrating solutions
into their businesses' strategy, practices and tools. Their main
focus is to help customers add value to their businesses
through the services provided by them. They believe in
mutually beneficial long term partnership with their customers
and they significantly invest their resources on learning &
implementing new technologies in the most innovative manner
to enhance performance, promote efficiency and finally, add
tangible values to the businesses of our customers.
The focal point of all services provided by these software
companies is customer satisfaction and the foundation is
quality assurance [21] policy. They believes and practices in
creating long term mutually beneficial relationship with
customers by establishing close partnership at both technical
as well as management level and by understanding the
customers’ business focus, values, practices, and processes.
Their quality assurance policy ensures that all deliverables
provided on time, kept within scopes, delivered with quality as
agreed upon by both customers and the outsourcing
companies; and thus ensuring value addition to the business of
our customers. Since they have the vision “Value Added Off-
shore Services” is to add measurable business value for their
customers in addition to integrating technology to Off-shore
Software Development, they should emphasis on improving
research methodology to ensure software quality.

1.1 PURPOSE

The purpose of this document is adhering to defect detection
and defect prevention techniques to enhance quality of the
product. Pro-active Defect Prevention (DP) is to create an
environment for controlling defects and reduce cost. Defects
with the ratio of only 80% can be captured by inspection and
testing. Cost required for rework found being more expensive
than the cost incurred in adhering to DP strategies. The focal
point of quality cost investment is to invest in right DP
activities rather than investing in rework which had seen as an
outcome of un-captured defects.

1.2 SCOPE

This document describes an analysis based on data
obtained from leading software companies of varying software
production competence. Defect prevention (DP) is a process of
identifying defects, their root causes and corrective and
preventive measures taken to prevent them from recurring in
future. Identified defects classified at two different points in
time 1) time when the defect first detected and 2) time when
defect fixed. If a defect dwells for a longer time in the product,
it is more expensive to fix it. Therefore, it is necessary to
reduce defect injection and boost defect removal efficiency.
The cost of rework for 1% of defect when identified at the
customer’s site is 10 times the cost required for fixing the
same defect when identified in-house. As a matter-of fact,
companies adapting to DP strategies over a period of time,
quality of the product enhanced while the cost of quality
reduced. This document covers all of the activities and support
required to reduce cost and reduce rework from the software
requirements analysis phase through completion of the system
test phase of the software life-cycle. Identifies the defects of
the project and the activities, processes, and work products
developer will review and audit Identifies the work products.

Volume 4, Issue 5

ITEE Journal

ISSN: - 2306-708X

October 2015

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

2.0 METHODOLOGY OF DATA GATHERING
AND ANALYSIS

2.1 CHARACTERISTICS OF SOFTWARE QUALITY

Software has both external and internal quality characteristics.
External characteristics are characteristics that a user of the
software product is aware of including,

= Correctness- The degree to which a system is free
from faults in its specification, design, and
implementation.

= Usability - The ease with which users can learn and
use a system.

= Efficiency - Minimal use of system resources,
including memory and execution time.

= Reliability - The ability of a system to perform its
required functions under stated conditions whenever
required—having a long mean time between failures.

» Integrity - The degree to which a system prevents
unauthorized or improper access to its programs and
its data. The idea of integrity includes restricting
unauthorized user accesses as well as ensuring that
data accessed properly—that is, that tables with
parallel data modified in parallel that date fields
contain only valid dates, and so on.

= Adaptability - The extent to which a system used,
without modification, in applications or environments
other than those for which it specifically designed.

= Accuracy - The degree to which a system, as built, is
free from error, especially with respect to quantitative
outputs. Accuracy differs from correctness; it is a
determination of how well a system does the job.

= Robustness - The degree to which a system continues
to function in the presence of invalid inputs or
stressful environmental conditions. Some of these
characteristics overlap, but all have different shades
of meaning that are applicable more in some cases,
less in others.

External characteristics of quality are the only kind of
software characteristics that users care about. Users care about
whether the software is easy to use, not about whether it’s
easy for us to modify. They care about whether the software
works correctly, not about whether the code is readable or well
structured.

Programmers care about the internal characteristics of the
software as well as the external ones, and it focuses on the
internal quality characteristics. They include

= Maintainability - The ease with which we can modify
a software system to change or add capabilities,
improves performance, or correct defects.

= Flexibility - The extent to which we can modify a
system for uses or environments other than those for
which specifically designed.

= Reusability - The extent to which and the ease with
which we can use parts of a system in other systems.

= Readability - The ease with which we can read and
understand the source code of a system, especially at
the detailed-statement level.

= Testability - The degree to which we can unit-test and
system-test a system; the degree to which we can
verify that the system meets its requirements.

= Understandability - The ease with which we can
comprehend a system at both the system-
organizational and detailed-statement levels.

The difference between internal and external characteristics
isn’t completely clear-cut because at some level internal
characteristics affect external ones. Software that isn’t
internally understandable or maintainable impairs our ability
to correct defects, which in turn affects the external
characteristics of correctness and reliability. Software that
isn’t flexible cannot enhance in response to user requests,
which in turn affects the external characteristic of usability.
The point is that some quality characteristics emphasized to
make life easier for the user and some emphasized to make life
easier for the programmer.

The following chart shows only typical relationship
among the quality characteristics. On any given project, two
characteristics might have a relationship that’s different from
their typical relationship

How focusing

w = w
~ w - - = v
onthefactor | S| .| 2| 2| _ | = 4
s Z 2| = el = =

- = = cl= =
below affects | 3| Z|.2| Z[Z| 2 2
- sl =2l E| B8 7 =
thefactorto [5| Z|E| 5| | £ <
the right S e I B Bl It ~
Correctness " f .‘ "

up | dm mp | mp| Accuracy

Usability 4 4

Efficiency ' 443 " 4

Reliability 4 ’ 1' ‘

Integrity ‘ .' f

Adaptability ’ ! § 4

Accuracy % ‘ ’ * + " Helps it L
Robustness ' f ’ . G '.‘ ‘ f Hurts it *

Volume 4, Issue 5
October 2015

ITEE Journal

ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

2.2 FINDING A DEFECT

Debugging consists of finding the defect and fixing it. Finding
the defect (and understanding it) is usually 90 percent of the
work. Debugging by thinking about the problem is much more
effective and interesting than debugging with an eye of newt.

2.3 THE SCIENTIFIC METHOD OF DEBUGGING

Here are the steps we go through when we use the scientific
method:

i. Gather data through repeatable experiments.

ii. Form a hypothesis that accounts for the relevant data.

iii. Design an experiment to prove or disprove the hypothesis.
iv. Prove or disprove the hypothesis.

v. Repeat as needed.

This process has many parallels in debugging. Here’s an
effective approach for finding a defect:

i. Stabilize the error.
ii. Locate the source of the error (the “fault”).

a. Gather the data that produces the defect.

b. Analyze the data that has gathered and form a hypothesis
about the defect.

c. Determine how to prove or disprove the hypothesis,
either by testing the program or by examining code.

d. Prove or disprove the hypothesis using the procedure
identified in ii(c).

iii. Fix the defect.
iv. Test the fix.
v. Look for similar errors.

2.4 BENEFITS OF EARLY DETECTION AND
PREVENTION
Table 2.4: Cost of Defects/ Price of quality

Phase Relative Cost to Correct defect
Definition $1

High-Level Design $2

Low-Level Design $5

Code $10

Unit Test $15

Integration Test $22

System Test $50
Post-Delivery $100+

3.0 ANALYSIS OF ACTION, DESCRIPTION AND
RESPONSIBILITY

As special technical skills needed, such as those of
database administrators, quality assurance [21] specialists,
human factors specialists, and technical writers, it becomes
more and more important to plan organization structures
carefully. Indeed, among the hallmarks of the larger leading-
edge corporations are measurement specialists and
measurement organizations. One of the useful by-products of
measurement is the ability to judge the relative effectiveness
of organization structures such as hierarchical vs. matrix
management for software projects and centralization vs.
decentralization for the software function overall. Here too,
measurement can lead to progress and the lack of
measurement can lead to expensive mistakes.

The scientific method isn't really one set of methods, but a
larger set of guiding principles. It's about developer want to
find out how the system works; software testers want to know
how the software they're testing works. Those two missions
share a lot in common. The scientific method based on
observation and experimentation. Testing is the same thing.
We set up tests that are very much like experiments, and then
we run them and observe what happens. That's the same way
scientists test their hypotheses. We run experiments, measure
the results and analyze the data to figure out what's really
happening. The concept of empirical falsifiability is just
proving ideas wrong through experiments. Testing is very
similar in that we can't prove the software is flawless; we can
only find ways to make the app fail through testing.

If you ask a business manager how much to test the software,
they'll probably tell you to test everything. Good testers let
them know we can't test everything. It would take an infinite
number of tests to get at every possible scenario. We can only
look for conditions under which software fails. If tests find no
failures, we can have more confidence that it's going to work,
but we're still not ever completely sure. After many failed
attempts to disprove a hypothesis, scientists build up
confidence in hypothesis. It gives their theories credibility.
Software testers are really doing the same thing.
Because tests are like experiments and they contain many
variables in them, software testers should be using what
scientists in many industries have been doing for decades
namely use smart test design methods that allow them to learn
as much actionable information in as possible in each test they
run. There is a scientific approach to doing just that. It is
called "Design of Experiments." As a result, the tests they
construct are highly repetitive of one another and they miss
many important gaps in coverage.

Volume 4, Issue 5
October 2015

ITEE Journal

Information Technology & Electrical Engineering

ISSN: - 2306-708X

©2012-15 International Journal of Information Technology and Electrical Engineering

Table 3.1: Overview of Software Estimation Steps

Action

Description

Responsibility

Output Summary

Step 1: Gather and
Analyze Software
Functional &
Programmatic
Requirements

Analyze and refine
software requirements,
software architecture,
and programmatic
constraints.

Software manager,
system engineers, and
cognizant engineers.

e Identified constraints

e Methods used to refine
requirements
Resulting requirements

e [IResulting architecture
hierarchy

Step 2: Define the
Work Elements and

Procurements project.

Define software work
elements and
procurements for
specific

Software manager,
system engineers, and
cognizant engineers.

e [IProject-Specific product
based software WBS
[JProcurements

e [JRisk List

Step 3: Estimate
Software Size

Estimate size of software
in

logical Source Lines of
Code (SLOC).

Software manager,
cognizant engineers.

. [1Methods used for size
estimation

. [ILower level and total
software size estimates in
logical SLOC

Step 4: Estimate
Software Effort
Software manager,
cognizant

Convert software size
estimate in SLOC to
software development
effort. Use software
development effort to
derive effort for all work
elements.

engineers, and software
estimators.

e [|Methods used to estimate
effort for all work elements

e [JLower level and Total
Software Development Effort in
work-months (WM)

e [|Total Software Effort for all
work elements of the project
WBS in work-months

e [IMajor assumptions used in
effort estimates

Step 5: Schedule the
effort

Determine length of time
needed to complete the
software effort.

Establish time periods of
work elements of the
software project WBS
and milestones.

Software manager,
cognizant engineers, and
software estimators.

e [ISchedule for all work
elements of project’s
software WBS
[1Milestones and review dates
[1Revised estimates and
assumptions made

Step 6: Calculate the
Cost

Estimate the total cost of
the
software project.

Software manager,
cognizant

engineers, and software
estimators.

e [|Methods used to estimate the
cost
[1Cost of procurements

e [IItemization of cost elements
in dollars
across all work elements

. [1Total cost estimate in dollars

Step 7: Determine
the Impact of Risks

Identify software project
risks, estimate their
impact, and revise
estimates.

Software manager,
cognizant

engineers, and software
estimators

. [IDetailed Risk List
[1Methods used in risk
estimation

. [1Revised size, effort, and cost
estimates

Step 8: Validate and
Reconcile the
Estimate Via Models
and Analogy

Develop alternate effort,
schedule, and cost
estimates to validate
original estimates and to
improve accuracy.

Software manager,
cognizant engineers, and
software estimators.

. [I1Methods used to validate
estimates

e []Validated and revised size,
effort, schedule, and cost
estimates.

Step 9: Reconcile
Estimates, Budget,
and Schedule

Review above size,
effort,

schedule, and cost
estimates and
compare with project
budget and

Software manager,
software

engineers, software
estimators,

and sponsors.

. [1Revised size, effort, schedule,
risk and

e cost estimates
[I1Methods used to revise
estimates

Volume 4, Issue 5
October 2015

ITEE Journal

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

schedule. Resolve
inconsistencies.

[JRevised functionality
[JUpdated WBS
[JRevised risk assessment

Step 10: Review and
Approve the Estimates

Review and approve
software size effort,
schedule, and cost
Estimates

The above personnel,
software engineer with
experience on similar
project, line and project
management.

[IProblems found with
reconciled estimates
[TReviewed, revised, and

approved size, effort, schedule,

and cost estimates
[JWork agreement(s), if
necessary

Step 11: Track,
Report, and Maintain
the Estimates

Compare estimates with
actual data. Track
estimate accuracy.
Report and maintain
size, effort, schedule,
and cost estimates at
each major milestone.

Software manager,
software engineers and
software estimators

[JEvaluation of comparisons of

actual and
estimated data

[JUpdated software size, effort,

schedule, risk and cost
estimates
[1Archived software data

4.1 OBSERVATIONS ON THE OUTPUT OF ANALYSIS

Table 4.1: Current Capability Assessment about REQUIREMANTS

ISSN: - 2306-708X

Procedures Practices &

Roguiremens
General
Informtion -

Concise, Complete
and Consistent

Review Checklist.

Ohjective Policy Sequence Standard DOC Cost Help Ohjective
e =
To cover functional | capabilities o | - Existing Business SRS - Review
and mon-functional deliver produscts, Proscoess . Compliance information system
requireTment, projocts anmd | - Maodification Droscumeent Comtent procoedures
seounty Services wof an | Regquirement of Existing GGeneral X
requirenments, otstanding gquality | Business Process Imformeation - EI000) A_ﬁm"‘ |mc{n;!l
interface - Functional and non Concise, Complete reyiews bo eliminate
requireTe s, waer Cheality Fumetional requirenents and Consistent a mh'-"’m."tj’. and
specific requirenments - System requiremeants Imtegrity e
requirensents, and Testahility - Existing Hardware & Maintainahility .
system requirement | Implement ability Softwan Performance M“h |.n1su'ln.:|l .
of the project. - Sccurity Roguirements | Usability & User e “'_“H'J d"t_lm
Imtegrity - Expandahility / Training Jm'mm"‘m_’- n
Portability Portability teane of their
Maintainability) Usahility Quality testability
Efficiency/ Performanc
Functiomal e, Acceptance Cniteria

Volume 4, Issue 5
October 2015

ITEE Journal

Information Technology & Electrical Engineering

ISSN: - 2306-708X

©2012-15 International Journal of Information Technology and Electrical Engineering

Table 4.2: Current Capability Assessment about DESIGN

Procodures
Objective Policy Practices & Standard DOC Cost Help Ohjedive
Sequence
The Design | Architectumal Project Schedule Dresign Document -Promeote peer
considerations must | Design Die=ign Dovewmeent Rewview Check List insEpections of
COWET any Review Checklist Configuration Plan 2000 new muodi fioed
ASSIMPTONS oF Dratailed Design Moeeting Minwtes Configuration design componems
dependencies which Drata Dictionary Comtmol. for mew releases
meed i be User imerface | Entity Relationship
addressed or design Diagranm Avuchitectural/Logical -Assure proposed
reso bved hefore User Inertace phase of Designing design changes are
attempting to devise approved
a complete design
Sohtion.

Table 4.3: Current Capability Assessment about CODING

Procedures Practices &

Oihjective Palicy . Standard DOC st Help Ohjective
Soguenoe
Coding procedun o pamy Code | Review the details design | The detault java & -Review code
will maintain for Ciomvention. plamn, identify | Microsoft coding E1000 against ooding
bothnew projoct legacyiexternal resources | comvention is used standards {sounce
and enhancement Sournce Code consider development and lines of code,
of exisience tagaing lamgueagetoolstechnology | compating and comiplexity)
software selected for coding before | softwan
praject/ maodule Configuration start the actwal coding | infrastrechere
Mmmagement Plan. | phase by a review
Review Meeting meting.
maintain - the Project

Schedule according ly

code review moeeting
Minutes of the review is
preparad and kept in the
Project File.

Approval for
commencing Testing
Phase is given.

Table 4.4: Current Capability Assessment about TESTING

Procodunes
Ohjective Palicy Practices & Standard DO it Help Ohjective
Sequence
To enswre that the | Purpose and Scope: | Test Planning is | Functional Tests -Participate in dry
development is | Methodology done during the F4000 s b assune real-

complete as por the
Requirement of the

Rizk Analysis

Analysis Phase and
i= staed in the

Boundary Tests,

timee performance
-Maonitor acheal

Client for both new | Configuration Plan | Project plan. Performance Tests timing results
software project and during stand-alone,
for the maintained | Test Plan Umit testing imtegration and

software project.

Progress Monitoring
Project Schedule

Deliverables
Team Strsctne

System acceptance

secunty test & other
tests

Test Plan.
Test Schedule
Test Specifications

sysiem level testing

Volume 4, Issue 5

October 2015 ISSN: - 2306-708X

ITEE Journal

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

Table 4.5: Current Defect Detection Assessments

Cost Cost of

Drefect Case Analysis Mligrati
ok o Prevent
Entry Detect | Reguirement Dicsign Coding Testing Diefoct | Cost i
iom Fixatio
Policy |Proced |Standa (Policy |Proced [Standa |[Policy | Proced |Standa |Policy |Proced [Standa "
e rd e rds wre nd ure rd
Ammbiguei [Standa |foedba |Perfor | Integr | bufferi [Record |annotat | Upda Werific | nsure Test
ity rds ck m iy ng and |= ane o e atiomn effectiv |plan F200 | B250M0 R0
Fromm causal (Mainda (blocki [labeled |standar |[coding and =
Redunda |[Rodun |custo |analysi [inabilit |ng ds stamnda walidat |imple [Test
mt data damt meers, = and ¥ indexe rds for om meentati |repaort
e |stafl, prionti | Perfor i and DB i ot o ok
projoct |7o oot | mance Filed design, |s mami OME
Laogic |review |cawses | Ul=sahil ng, imtermna
= ity & s and | email
Ulser cane [T system,
Traini de=ign |interta imtrane
ng e t, daily
Portab ST
ility mecotin
Chealit o,
¥ e i
iy and
ciroulat
o o
AL
ement
review
S T

5.0 Suggestions for improving better balance between quality and cost based on analysis

In the previous tables we have certainly observed that prevention of defects and detection of early defects is
the major requirement to improve software quality. If the error detected at later stages the cost is also
increasing proportionally in order to fixing the bugs. Even the quality decreases if the errors are detected at
later stages because fixing a bug at later stages may add another bug and cause system malfunctioning.
Based on the scenario we shall propose for improving better balance between quality and cost based on
analysis are as follows:

Table 5.1: Proposed Capability Assessment about REQUIREMANTS

Procedures
Ohjective Policy Practices & Standard DOC st Help Ohjective
Sequence
Giathering/eliciting ‘ascertaining ‘uncovering | formal Focuson Function -Assure wse of the
remuirements specification interfaces Identification E1500 regquirements
technigues between the Function volatility metrics
Analyzing {and perbaps modeling md'or | defensive design software and the | Organization . Maintain
refining jthose requirements for Promote informal | system in Function aystem
consistency, completencss, oM ication analyzing the Specification regquirements
approprigiencss, and so on AMONE teams problem domain | Functional . Assure
Identify critical Reguirements functional
Deetermining what subsat of those hazards arly in Drocumentation haseline
requirements should sctually be addressed the roguinement Requirements
given the constraining budgets and analysis. Performance
schedules Requirements
Documenting the selectod roguirements Secunty
Reguirements
WVerifying that the specified requirements Interface
conform to all the quality standands Requirements
Portability
Managing changes to requirements Requirements
Resouree
Requirements
Maintainahility
Requirements
Acceptance-
Testing
Requirements

Volume 4, Issue 5

October 2015 ISSN: - 2306-708X

ITEE Journal

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

Table 5.2: Proposed Capability Assessment about DESIGN

Comip liance testing

Procodunes
Ohjective Palicy Practices & Standard DOC it Help Ohjective
Sequence
Dremign consists of | Hicranchical Project Schedule Drata Flow Diagrams -Participate in
muliple views | decomposition Dresign Document Transformation 1500 formal customer
{both Top-down design Review Checklist Schema design reviews with
static and dynamic) | Object-oriented Moeting Minutes Structured English the custommer
A design is | design Drata Dictiomary Drecision Tables . Assure allocated
evaluated against | Functional design Entity Relationship | State- Transition haseline
goals Driagram Diagrams . Aussure that test
{requirements), often User Imerface Transition Tables procodunes cover all
using standard Precondition- Post testahle
propertics]{ e.g., cond itions requirements
coupling and
cohesion)
Table 5.3: Proposed Capability Assessment about CODING
Ohjective Palicy Procedures Practices & | ¢ tard DOC Cost Help Objective
Sequence
Formatting, Layout | Commenting naming convention must | The detault java & - Asswre internal
and Style Format of Control | be followed Micrmsoft coding FES00 SCM for problem
Drefensive Structures convention is wsed control and
Prros gramming performing activities and | computing and cormective action
Managing o pomd their saquence to comply | softwane longs
Constnection Statements policies infrastnechure
switch/case Sowrce code for - Assure version
Statenvent functions shoukd control of
Entry Condition generally not devie lopment
Laovoips v, Exit exceed 30 lines of sofware prior to
Condition Loop code. imtegration
Functions Fumnctions shall
hegin on a new
page.
Table 5.4 Proposed Capability Assessments about TESTING
Procedums
Ohjective Paliey Practices & Standard DOC s Help Ohjective
Sequence
The goal testing for Test Manning is | Accoptance testing - Az adoquate
software 1s fo dore during the | Alphatest 3000 regression testing as
guickly find the Puarpise and Seape Analysis Phase and | Beta test MECEssary
duth:a in Metiodalogy i _51.'|1‘.'d i the | Installation testing -As&m_;uio.m_.‘nc
reguinements and Risk Analvsis Project plan. desenphon exists of
code and get the Configuration Pl . the released
software mnning as | Test Flan Unit testing Tesiing process goals software version
an integmted Progress Moniloring | System acceptance
. Iali 4 4
-.'-i:ll'.l'l[!li:lﬂ\'.!m af the P]'-.'I-_ln.‘\."'l Schiedule Validation leang
enterprise financial | Deliverabls secunty test & other .
o 3 sysiom fesing
system aswellas | Team Structure tests RIS
provide guidaee Teating of individual Uimiponient testng
L} ! " 1l '
§ [EOEam SMIpEEDE, Comparison festing
fiar the people h . Test Plan. ML
) [hefizet ieding . Compatibility
festing the software, Test Schedule testing
Test Specifications End-o-end testing
Risk analysis festing
Regression testing

Volume 4, Issue 5 I T E E Joumal ISSN: - 2306-708X

October 2015

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

Table 5.5: Quality and Cost Benefit Based Analysis of proposed capability:

Crefct Case Analysis Cost of [Migrati | Cost of
Entry Dretecti | Requirement Dresign Coding Testing Defeet [on Cost | Preventi
o Fixatio on
Policy |Proced |Starda |Policy [Proced | Standar |Policy |Proced [Standa |Policy [Proced |Standa |,
ure md ure ds e rd unc rd
Logic Traini | Paret | Doa Basin | Defin | Revie | functi | Trace e logica | Walid | | Test
Stndar |ngon |o requir | css cthe |withe |omnal ability | of I flow | ation | - | plan
s, Datab | amaly | ement | proce | rules | staus | Datab alohal testin | oo F500 [£300 i1 (0
Redund | ase sis walkth | ==, and and ase Folls | versus |maxi | g seekE | Test
antende | stnect rmough proce | benefi | design | withe | local T :'::_‘m_ report
une Imple MWaodif | dures | i=of excep | variab | size Defiee | docemes
User et Impr | icatio | for DF at | Evalu | tion les, and 1 timg of
Interfac | object | solwti | ove n realizi [end of | atethe | kandli | ohi compl | testin :m Test
[mandel | ons the Regui | ngan | mext archite | ng T::T:arl cxity | g expeciad | result
. comm | remen | anchit | iverati | cture e £ |t -‘-‘j-:'_
Archite | Perfor | Revie | unicati | tof coture | on as 4 proce | Unit |25
. : shanin . e
ciune m wihe |onand | Proce |ina imple dures | testin | pods for
-
causal | stane | Coordi | ss compl menie -"*I'Jt) ' -
Informti | analys | and ration | - etod d 1¢m.p-.:- ermr ""::':_
o isand | hemefi syste ru} heandli —
priort | ts of Shoul | Funct | m |n1.u'm i e
. . . adiate B actial
duplicac | ize D at | dhe ional " —
| -) I Sorag e
¥ ot end of | exami | and . EESS
cause | mext e R ‘T-x . fee
coneur s iterati | conewr | Amcti e gemmEs
ancy on rency | onal m d
problem | Identi proble | redguir pmo; e
fiy and mor | ement e ==
cames
dewel Time E -
op - of
soluti Systc copy
[m mem b

Volume 4, Issue 5
October 2015

ITEE Journal

Information Technology & Electrical Engineering

©2012-15 International Journal of Information Technology and Electrical Engineering

6.0 RECOMMENDATION TO
IMPROVE

6.1 IMPROVE PROJECT SQA PROCESSES

The SQA activity for process improvement
requires:
I) Understanding project and SQA processes

1) Determining where inefficiencies or
defects occur (root causes of defects)

1II) Recommending changes to project
processes to improve efficiency or reduce
defects

V) Recommending improvements to
eliminate the root causes of defects

V) Recommending training courses for the
project team

The purpose of this activity is for SQA to review
existing project and SQA processes and report on
efficiencies and areas for improvement and identify
processes that need to define. To improve project
SQA processes, SQA needs to review and audit
both project processes and SQA processes. This
will ensure that project processes and project SQA
processes consistent and compatible with one
another. Process improvement may result in
changes to the policy, processes, and/or procedures.

6.2 Measurements for Defect Analysis

In some sense the goal of all methodologies and
guidelines is to prevent defects. For example, a
design methodology gives a set of guidelines that if
used will give a good design. In other words, the
design methodology aims to prevent the designer
from introducing design defects by guiding him
along a path that produces good and correct
designs.

However, by defect prevention (DP) we mean
learning from actual defect data from a project with
the goal of developing specific plans to prevent
defects from occurring in the future. As the main
goal of DP is reduction in defect injection and
consequent reduction in rework effort, it is best if
suitable measurements made such that impact of
DP can quantitatively evaluated. That is, a project
employing DP should be able to see the impact of
DP in the injection rate and on the rework effort on
the project. For both of these proper metrics have to
be collected. Furthermore, suitable data needs to be
collected to facilitate the root cause analysis for DP.
The measurements needed for evaluating the
effectiveness are defects and effort. For defects,
data on all the defects found and their types needed.

This data is easily available if projects follow the
practice of defect logging, as is the case in most
mature organizations. To facilitate defect analysis,
for each defect, its categorization in a fixed set of
categories should also record. A classification like
the one proposed by the IEEE standards [23], or by
the orthogonal-defect classification scheme [22]
can be used.

Frequently, organizations log information like
detection stage, injection stage, etc to facilitate
different types of analyses. Details about the
different parameters recorded during defect logging
given in [9]. For understanding the impact of DP on
rework, the effort spent on the project needs to
record with suitable granularity such that rework
effort can be determined. Specifically, for each
quality control activity, the rework effort should not
club together with the activity effort but must
record separately. Effort logging generally requires
that each member of the project team record the
effort spent on different tasks in the project in some
effort monitoring system frequently, different codes
used for different categories of tasks and for most
of the major tasks the effort divided into three
separate categories — activity, review, and rework.
With this type of categorization, rework effort for
each phase can be determined. Details about the
system and codes used for effort reporting
mentioned here [9].

These measurements about defects and effort are
sufficient to do defect analysis and prevention, as
well as quantify the impact of DP. Note that DP can
done, and its impact on the defect injection rate can
be determined, even if the effort data is not
available. However, without the effort data, the
impact of DP on rework cannot be determined.

7.0 Cost benefit analysis

Cost, of Practicing Current Process
Costim of Practicing improved Process

Cost increase = Costjy, - Cost,
=$1000 - $1500
=$500

Gross Benefit = [CDF; — CDFi, + MC, — MCj, +
CPim- CP¢]
= $2500- $500+$2500-$500+$1000-
$2000
= $3000

Net Benefit = Gross Benefit - Cost;, - Cost,

=$3000- $500-$1500
=$1000

10

ISSN: - 2306-708X

Volume 4, Issue 5
October 2015

ITEE Journal

Information Technology & Electrical Engineering

ISSN: - 2306-708X

©2012-15 International Journal of Information Technology and Electrical Engineering

Process Improvement(in thousand S) 1000 5000 10000 15000 20000
Net Benefit($) 5000 25000 50000 25000 5000
60000
50000
40000
/ \ Process Improvement(in
30000 thousand $)
/ \ e Net Benefit($)
20000 / /(
10000 // \
o T T T 1
1 2 3 4 5

Figure 7.0: Net Benefit vs Process
Improvement Graph

8. Conclusion and recommendations

Defect prevention can improve both quality and
productivity. If the number of defects injected
reduces, then the quality improves as the number
of residual defects in the delivered software
reduces. Furthermore, if we inject fewer defects,
fewer defects need to be removed at earlier stage,
leading to a reduction in the effort required to
remove defects. The subjectivity of Net benefits
vs process improvement graph measures the
visibility on defection and prevention of defects
at earlier stages. Optimum Software quality
assurance practices and reduce rework for cost
benefit oriented analysis can be visible and
analyzed thus organization can reach the
objective of the best balance for improving
quality product and cost reduction process.

9. References

[1]. V. R. Basili and A. Turner, Iterative
enhancement, a practical technique for software
development, IEEE Transactions on Software
Engg., 1(4), Dec 1975.

[2]. V. R. Basili, Ed., Tutorial on Models and
Metrics for Software Management and
Engineering, IEEE Press, 1980.

[3]. V. R. Basili and H. D. Rombach, The
experience factory, The Encyclopedia of
Software Engineering, John-Wiley and Sons,
1994.

[4]. K. Beck, Extreme Programming Explained,
Addison Wesley, 2000.

[5]. E. J. Chikofsky, Changing your endgame
strategy, IEEE Software, Nov. 1990, pp. 87, 112.
[6]. Cockburn, Agile Software Development,
Addison Wesley, 2001.

[7]. Collier, T. DeMarco, and P. Fearey, A
defined process for project postmortem review,
IEEE Software, pp. 65-72, July 96.

[8]. J. L. Hennessy and D. A. Patterson,
Computer Organization and Design, Second
Edition, Morgan Kaufmann Publishers, Inc.,
1998.

[9]. P. Jalote, CMM in Practice — Processes for
Executing Software Projects at Infosys, SEI

Series on Software Engineering, Addison
Wesley, 2000.
[10]. C. Jones, Strategies for managing

requirements creep, [IEEE Computer, 29 (7): 92-
94.

[11]. P. Kruchten, The Rational Unified Process —
An Introduction, Addison Wesley, 2000.

[12]. W. W. Royce, Managing the development
of large software systems, IEEE Wescon, Aug.
1970, reprinted in Proc. 9th Int. Conf. on
Software Engineering (ICSE-9), 1987,
IEEE/ACM, pp. 328

11

Volume 4, Issue 5 I T E E Joumal

October 2015

Information Technology & Electrical Engineering

ISSN: - 2306-708X

©2012-15 International Journal of Information Technology and Electrical Engineering

[13]. Software Engineering Institute, The
Capability Maturity Model for Software:
Guidelines for Improving the Software Process,
Addison Wesley, 1995.

[14]. C. Larman, Applying UML and Patterns,
2nd Edition, Pearson Education, 2002.

[15]. C. Larman and V. R. Basili, "Iterative and
Incremental Development: A Brief History", June
2003, IEEE Computer.

[16]. D. N. Card, “Learning from our mistakes
with defect causal analysis”, IEEE Software, Jan-
Feb 1998.

[17]. D. N. Card, “Defect causal analysis drives
down error rates”, IEEE Software, July 1993.
[18]. R. Mays et al., “Experiences with defect
prevention”, IBM Systems Journal, 29:1, 1990.
[19]. P. Jalote et. al., “Timeboxing: A process
model for iterative software development”,
Journal of Systems and Software, 2004, 70:117-
127.

[20]. P. Jalote et. al., “The Timeboxing process
model for iterative software development”, in
Advances in Computers, 2004, Vol 6, pp 67-103.
[21]. International Standards Organization,
1SO900-1, Quality Systems — Model for Quality
Assurance in Design/Development, Production,
Installation, and Services, 1987.

[22]. R. Chillarege et. al. Orthogonal defect
classification — a concept for in-process
measurements. IEEE Transactions on Software
Engineering, 18(11):943:956, Nov 1992.

[23]. IEEE, Std. 1044-1993. IEEE standard
definition, classification for software anomalies,
IEEE

12

