

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

60

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

Object Character Recognition in C# using Tesseract

Aleeza Safdar

Research Assistant,

Dept. of Software Engineering

Bahria University Islamabad (BUI), Pakistan

aleezasafdar10@gmail.com

U. Mansoor Ali

Research Assistant,

Dept. of Software Engineering

Bahria University Islamabad (BUI), Pakistan

usama_sam92@live.co.uk

Dr. Shahid N. Bhatti

Senior Assistant Professor,

Dept. of Software Engineering

Bahria University Islamabad (BUI), Pakistan

snbhattii.buic@bahria.edu.pk

Dr. S. Asim Ali Shah

Senior Assistant Professor,

Dept. of Electrical Engineering

Bahria University Islamabad, Pakistan

asimshah.buic@bahria.edu.pk

ABSTRACT

There are numerous difficulties in recognizing the textual data from the images and requires great attention. Typical OCR (optical

character recognition) systems provide this facility to detect the textual data from that of image data. The text can also be in

handwritten format. In this paper we propose the methods or API’s that are used in Visual Studio to detect the text from that of

images. As Visual Studio only supports MSDN libraries and for this reason the other operations to be performed like, in text

recognition Optical Character recognition (OCR) simply cannot be implemented without any elaborated API. These API’s are

basically based on different libraries that are to be introduced in Visual Studio in order to use the predefined functions of these

mentioned libraries.

Keywords: Visual Studio, API (Application Programming Interface), MSDN (), OCR (optical character recognition), OpenCV

1. INTRODUCTION

 Image processing is the analysis and manipulation of

a digitized image, especially in order to improve its meaningful

quality. C# is the most widely & recently used programming

language that creates an environment to solve image processing

disciplines. The Textual recognition from the image can be

achieved by using the ‘OpenCV’, which is a library of

programming functions mainly used at real time computer

vision. Further this library crosses the platform that usually

focuses on real time image processing. In C# OpenCV is added

along with its wrapper emgu CV. This wrapper further is

precisely written in C# and do not use unsafe code

2. EXTRACTING TEXT FROM IMAGE

A. Font based

The text can be detected from an image but with very less

accuracy using OpenCV libraries. Most of the letters, words in

this cannot be extracted from an image similarly the precise

quality of the text extracted is also very low level. Most of the

words either disappear or they are not shown completely in the

required language.

B. Hand Written Text

In this another problem with OpenCV libraries is that they

do not support handwritten text. That is handwritten text cannot

be extracted from an image using OpenCV libraries. Even if the

image is to be captured using a camera still handwritten text in

image cannot be identified. The real challenge is that the

adaptive Threshold () algorithm is needed to be implemented

for the handwritten text to address the above mentioned

problem within OpenCV in regard to the handwritten text, but

this is an indeed a real challenge to do so.

C. Efficient API for C#

Tesseract is an OCR engine for the different operating

systems. It is free software and was developed under the

Apache License, Version 2.0 and further development has been

sponsored by the Google since 2006. Tesseract is considered

one of the most accurate open source OCR engines currently

available. It is the most accurate OCR engine available now

days. The Tesseract engine was originally developed as

proprietary software at Hewlett Packard labs in Bristol, England

and Greeley, Colorado between 1985 and 1994, with some

meaningful changes made in 1996 to the ports to Windows, and

also migration from C to C++ in 1998 [2] [10] [8]. Thus a lot of

the code was written in C, and then some more was written in

C++. Since then all the code has been converted to at least

compile with a C++ compiler, although very little work was

done in the following decade. It was then released as open

source in 2005 by Hewlett Packard and the University of

mailto:aleezasafdar10@gmail.com
mailto:usama_sam92@live.co.uk
mailto:asimshah.buic@bahria.edu.pk

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

2

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

Nevada, Las Vegas (UNLV) [3] [21]. Tesseract development

has been sponsored by Google since 2006.

Tesseract was in top three OCR engines in 1995. It was

developed for Linux, Windows and Mac OS but due to limited

resources it was only tested by Windows and Ubuntu [21].

Tesseract up to version 2 could only accept TIFF (tagged image

file format) images including single column of text as input.

Then with the version 3 output text formatting was also being

supported by the Tesseract. There was a library called

Lepontica used to add different image format in Tesseract. The

initial version was only able to detect the English language from

an image then with the version 2 and 3 it was able to detect

English, Spanish, German, Italian and many more [3] [11] [16].

If Tesseract is to be used to read the text from right to left

such as Arabic or Urdu then it will produce the results from in

order that will be from left to right. The Quality of the output

being produced from the Tesseract will be quite poor if the

image is not preprocessed to suit it. The image should be

properly scaled up to so that the text (x-height) is up to 20

pixels. If there are dark borders around the image they must be

removed and rotation in the image must also be avoided. As

due to the dark borders the Tesseract considers them as any text

or special character which can result in the form of inaccurate

output while the resizing of the image changes the resolution

(the further details in this are elaborated in section 5 of this

paper). Thus the image must be bright enough to be recognized

otherwise no text will be recognized. Tesseract can also be used

as a backend, which can help in solving more complicated OCR

tasks including layout analysis by using a frontend such as

OCRopus [20] [13].

Tesseract run from the Command Line Interface (CLI) and

does not appear with GUI while there are many projects that

provide us with GUI for the Tesseract, one common example in

this is OCRFeeder is free and open source software which has

the property to support all the command line in OCR engines

virtually.

D. Tesseract for C#

In order to use Tesseract in our C# project we have to

download tesseract-3.02.02-win32-lib-include-dirs.zip. But the

major issue is that it is built with the Visual Studio 2008 and

other VS do not support it. Thus in order to utilize it in VS 2010

or VS 2013 we will have to look at the ‘.Net wrapper’ for

tesseractOCR that the mentioned project has to be testing more

VS versions. As Tesseract and leptonica binaries have been

compiled with VS 2010, so one need to ensure that the VS 2010

runtime is installed. In order to add wrapper in VS 2012 or VS

2010 following procedure must be adopted [21] [9] [3].

1) In order to use Tesseract in your c# project you need

to make sure that you have downloaded the tesseract

language data files.

2) Then either you can use the internet to download the

Tesseract package or you can use the NuGet Package

to download it. NuGet Package is a service provided

by the Visual Studio Package Manager Console.

3) You have to make sure that Visual Studio 2012 x86 &

x64 runtimes are installed in your PC, because this

Tesseract package was developed in Visual Studio

2012.

4) Check that the language data files are of version 3.02.

Make sure that all the files in language data folder are

set to “Copy to output directory”

FUNCTIONALITY OF TESSERACT

Tesseract provides numerous functionalities but the prime

functionality is the usage of Tesseract Engine as it takes

arguments which include the data folder where all the languages

are saved. The language short form for example for the English

“eng” is used and for the Arabic “ar” is used etc. It also takes

the argument of EngineMode which is of 4 types and each has

their own pros and cons [21].

• Default

• Tesseract Only

• CubeOnly

• Tesseract And Cube

 Default give an average result which is neither the

fastest nor it is the quickest. Default option instructs the engine

to infer the best mode from the other three modes based on the

language. TesseractOnly uses the Tesseract part of the engine

only which is the fastest in terms of computation. CubeOnly

uses the Cube part of the engine only it is slower than Tesseract

but has better accuracy. Combined mode runs both Tesseract

and Cube modes and combines the results for the best accuracy

but it slows down the speed of computation.

It offers a functionality of Object, also the process in which the

image is passed as an argument. Make sure to add the effect of

black and white to the image for better result. It returns the

result to another object from with the text is extracted using

‘Object.GetText’. It returns the string which contains the text

present in the image.

IMPLEMENTATION

After downloading tesseract library we have implemented it

using its functions and classes. Firstly the images are taken

which are fonts based. Tesseract uses a different format for the

images used as that of ‘Pix’. That is, which is different from

that of Bitmap format and they cannot be applied to each other

implicitly. For that a “PixToBitmap” and “BitmapToPix”

converter is required. The confidence level is being checked i.e.

similarity between the original text that the image possesses and

text that is scanned to from image in txt format. In font based

images the confidence level is pretty good. But when it comes

to handwritten text again there is an issue regarding the size of

image as well as resolution. We have captured the difference

taken as sample through camera but when tesseract

functionality is being implemented the image is not detected

and nothing is shown as output. Because image resolution i.e.

pixels were very large and is unable to be detected by Tesseract.

After resizing the images again those samples are tested now

the results are much different. Most of the characters are

recognized and confidence level is also being increased. Means

text of handwritten images can easily be recognized using

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

3

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

Tesseract library functions. Similarly there are functions used

to crop image. This function is usually used to remove

unnecessary borders and to get only the required portion that

contains the text so that it can easily be recognized.

A. Training Set

Training Set is an approach of detecting handwritten text from

an image. In this approach a database/folder of similar images

of the alphabets are being saved (Samples of alphabets). All the

possible shapes of handwritten alphabets are kept there and

from this training set the handwritten alphabets are compared.

This is not very efficient way because its accuracy is very low,

it operates better in controlled environment which is hard to

maintain.

RESULT AND OBSERVATION

We took different types of samples which included font based

wallpapers, images from Facebook, hand written samples

which included simple ones and complex ones. The simple ones

were the one which had the letters written separately and they

were straight (non-italic) and the complex samples included

joining handwriting and characters too close to each other. We

observed the output of these samples with all the Engine Modes

of tesseract and we observed much deviation, besides we

observed other problems and constraints as well

It was observed that the images which were to be detected if

they were taken from the camera or they had high resolution

then the result were null. This was due to the difference in the

size of fonts. Images having “1920 x 1080” dimension had font

size very lard if they were compared to an average image so the

Tesseract function finds it difficult to detect it. The images were

resized to lower resolution which has dimension < 500 pixels

were easily detected. More over the blurry images, the images

with distorted pixels or text in which alphabets were too much

close gave inaccurate result.

A comparison between the text before resizing and after

resizing the image is shown below in the figure 1.

Fig.1. Test case: a resized image

Fig.2. Test case: not a resized image

The use of crop, sepia, Gray, blur and sharpening in the image

made the output accuracy a bit higher. Cropping the image

allows us to detect the text from an image where other different

backgrounds were there and if we detected the image like that,

a lot of errors were expected. Thus cropping effect allowed us

to remove those backgrounds and select only the textual part

from the image, from which the detection could be made.

A. Confidence Level

Confidence level is the percentage of text recognized by the

image out of total text. At first using OpenCV functionality the

confidence level was around 50% but with the usage of

Tesseract, it improved a lot. The confidence level in case of font

based images is from 60 to 90 percent which is fair enough

because the text based recognition is basically probabilistic

System i.e. 100% accuracy cannot be achieved in this process.

On the other hand handwritten text has confidence level from

50 to 60% which is approximately good [11].

B. Camera Captured Images:

When the images are captured through a camera and were tested

they have shown the results with 0 confidence level. The reason

is that the images taken through camera have high resolution

power but the images that needed to be tested using Tesseract

must have resolution up to 200 pixels. So in order to make them

appropriate for testing we have resized the image to get the

required results. After resizing again when image is tested it

gives the text with the confidence level from 50 to 60% [11]

[20].

B. Font based images

All those images those are in the format built-in Calibri or New

Times Roman font etc. They are font based images like the

wallpapers we use which have text written on it. These images

Sample

Output

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

4

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

can easily be detected and give accurate results if being

recognized by Tesseract.

C. Handwritten images

In this case we usually take paper, writes something using a

marker that is easily visible. Then the image is captured using

camera and is recognized using Tesseract. The output is usually

not exactly similar to the image but there is 50 to 60% similarity

which can be increased to 70 to 75% by using better image

quality and clear handwritten text. The Fig 3 (graph) depicts the

accuracy of text in an image. depicts the accuracy of text in an

image.

Fig.4. Output from Handwritten & Font based images

Fig.3.Depicts the accuracy of text in an image

The different aspects between the outputs from the font based

images and the handwritten text are (either complex or simple)

are shown in the following figure 4. One can clearly see that the

images from complex handwriting do not make any sense at all.

The accuracy is almost 0% here but in some cases it can

increase up to 10 %, although the handwritten simple and font

based text gives an appreciable result.

CONCLUSION

Font

based,

90%

Hand

written

(Simple),

65%

Hand

written

(Comple

x), 10%

Complex handwritten Simple Handwritten

 Font based

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

5

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

In the following while working with the different test scenarios

and test cases, we have concluded that the Tesseract (OCR) is

the most efficient library available for OCR in C#. Further

Tesseract (OCR) has the capacity as well as the capability of

improving the efficiency and accuracy with the help of the

training sets. It is perfect for the font based scenarios but it is

also that of particular interest that the handwritten detection is

better as compared to any other present libraries within C#. The

accuracy of text detection depends upon the detailed factions

and factors discussed in the different sections of this study

(work) and it can be improved as well as illustrated with the

different samples. The following limited case scenario

(experiment) and samples which we have worked on show the

results & assumptions in context to the font based accuracy as

well as with the textual based ratios as depicted in the particular

graph in section 5. Finally the observed Text detection is also

used in the different number automobiles plate detections

scenarios and also with the different mobile applications as

well.

REFERENCES

[1] Dino Esposito, Andrea Saltarello, 2014. Microsoft .NET

- Architecting Applications for the Enterprise, 2nd

Edition. Microsoft Press.

[2] John M. Blain, 2014. The Complete Guide to Blender

Graphics, Second Edition. Computer Modeling and

Animation 2nd Edition. A K Peters/CRC Press.

[3] Alex Okita, 2014. Learning C# Programming with Unity

3D, 1st Edition, A K Peters/CRC Press.

[4] Aneesa Rida Asghar, Shahid Nazir Bhatti, S. Asim Ali

Shah, “The Impact of Analytical Assessment of

Requirements Prioritization Models: An Empirical

Study” International Journal of Advanced Computer

Science and Applications(IJACSA), 8(2), 2017.

[5] Rose Holly, 2009. How good can it Get, D-Lib

Magazine.

[6] Jonathan Williamson, Character Development in

Blender 2.5, 1st Edition. Cengage Learning PTR.

[7] Farrukh L. Butt, Shahid Nazir Bhatti, Sohail Sarwar,

Amr Mohsen Jadi and Abdul Saboor, “Optimized Order

of Software Testing Techniques in Agile Process – A

Systematic Approach” International Journal of

Advanced Computer Science and Applications(ijacsa),

8(1), 2017.

[8] Jon Skeet, 2013. C# in Depth, Third Edition. Manning

Publications.

[9] Joseph Chancellor, 2006. “Rapid C# Windows

Development”, First Edition, Lulu Pubs.

[10] Shahid Nazir Bhatti, 2009. Deducing the complexity to

quality of a system using UML. ACM SIGSOFT

Software Engineering Notes 34(3): 1-7 (2009). DOI=

http://dl.acm.org/citation.cfm?doid=1527202.1527207

[11] Paul Dowland, Steven Furnell, 2009, Advances in

Communications, Computing, Networks and Security,

Volume 6, Proceedings of the MSc/MRes programmes

from the School of Computing, Communications and

Electronics, UK.

[12] John Sharp, 2013. Microsoft Visual C# 2013 Step by

Step, 1st Edition, Microsoft Press.

[13] Joseph Albahari, Ben Albahari, 2012. C# 5.0 in a

Nutshell: The Definitive Reference. 5th Edition,

O'Reilly Media.

[14] RB Whitaker, 2012. The C# Player's Guide, Starbound

Software.

[15] Robert Nystrom, 2014. Game Programming Patterns. 1st

Edition, Genever Benning.

[16] Shahid Nazir Bhatti, Asif Muhammad Malik, 2009.

An XML-based framework for bidirectional

transformation in model-driven architecture

(MDA). ACM SIGSOFT Software Engineering Notes

34(3): PP 1-5.

[17] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika

Tabassum, “Role of Requirements Elicitation &

Prioritization to Optimize Quality in Scrum Agile

Development” International Journal of Advanced

Computer Science and Applications(IJACSA), 7(12),

2016.

[18] Bart J.F. De Smet, 2013. C# 5.0 Unleashed, First Edition,

Sams Publishing.

[19] Darren M Littleboy. 2012, ”Numerical Techniques for

Eigenstructure Assignment by Output Feedback in

Aircraft Applications”

[20] Bill Wagner, 2010. Effective C#: 50 Specific Ways to

Improve Your C#, 2nd Edition, Addison-Wesley

Professional.

[21] Jeffrey Richter, 2012. CLR via C#, (Developer

Reference), 4th Edition, Microsoft Press.

[22] Tony Bevis, 2012. C# Design Pattern Essentials. Ability

First Limited

[23] Gary McLean Hall, 2014. Adaptive Code via C#: Agile

coding with design patterns and SOLID principles,

(Developer Reference), 1st Edition. Microsoft Press.

http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft34.html#Bhatti09
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft34.html#Bhatti09
http://dl.acm.org/citation.cfm?doid=1527202.1527207
https://www.google.com.pk/search?tbo=p&tbm=bks&q=inauthor:%22Steven+Furnell%22
http://dblp.uni-trier.de/pers/hd/m/Malik:Asif_Muhammad
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft34.html#BhattiM09
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft34.html#BhattiM09

©2012-16 International Journal of Information Technology and Electrical Engineering

ITEE, 6(2) pp. 60-64, APR 2017

6

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 6, Issue 2
April 2017

[24] Shahid N. Bhatti, Maria Usman, Amr A. Jadi, 2015,

Validation to the Requirement Elicitation Framework

via Metrics. ACM SIGSOFT Software Engineering

Notes 40(5): 17, USA.

[25] Zainab Sultan, Rabiya Abbas, Shahid Nazir Bhatti and

S. Asim Ali Shah, “Analytical Review on Test Cases

Prioritization Techniques: An Empirical Study”

International Journal of Advanced Computer Science

and Applications (IJACSA), 8(2), 2017.

AUTHOR PROFILE

Dr. Shahid Nazir Bhatti is currently working as Senior

Assistant Professor in the Software Engineering Department at

Bahria University Islamabad, Pakistan. He has obtained his

PhD from Johannes Kepler University Linz, Austria in year

2007 in the area of Software System Engineering. Dr. Bhatti

has more than 14 years of teaching, research & industrial

experience. Dr. Bhatti’s current research activities are in the

field of System Engineering, Requirement Engineering,

Software Metrics & Applications, Software Quality

Engineering, Information Systems, CBSD & Software

Reengineering.

Aleeza Safdar received the degree in Software Engineering

from Bahria University, Islamabad in 2016. Her research

interest areas are Software Engineering, Quality Engineering,

Simulations and Modelling.

Usama Mansoor Ali received the degree in Software

Engineering from Bahria University, Islamabad in 2016. He is

a research student of Masters in Software Engineering.

Currently he is a Teaching/Research Assistant at Bahria

University, Islamabad

Dr. Syed Asim Ali Shah is currently working as Senior

Assistant Professor in the Electrical Engineering Department at

Bahria University Islamabad, Pakistan. He received his degree

of Doctor of Philosophy in Simulation and Modelling from

Sheffield Hallam University, United Kingdom in 2016. He

received his MS in Electronics and Information Technology

majoring in Artificial Intelligence in 2004 from UK. He is a

member of Pakistan Engineering Council (PEC). He has over

13 years of teaching, research & industrial experience. His

current research activities are in the field of Simulation and

Modelling, Artificial Intelligence, Robotics and Control

Systems.

.

