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ABSTRACT 
 

Image denoising is a process which tries to recover error free image from its noisy counterparts. Most of times it is not possible to restore original 

image, thus noise suppression methods are adopted. Earlier methods based on linear and non-linear filters are not so effective, thus algorithms 

based methods based on iterative approach are preferred. However, in case of complex noises, these methods also fail due to under and over 

fitting. With the latest advancements, an approach that works on the basis of BM3D for removing noise is presented. This approach works with 

arranging 2D blocks of image segments in 3D arrays. Collaborative filtering is implemented in these arrays. This is accomplished in the following 

three steps: 3D transformation of a group, shrinkage of transform spectrum, and inverse 3D transformation. Principal component analysis is 

further helpful in dimension and noise reduction. This paper discusses the BM3DPCA based noise removal process. For the illustration purpose 

six images: Airplane, Baboon, Barbara, Boat, Lenna and Peppers are considered and results are discussed in terms of Peak Signal to Noise Ratio 

(PSNR). 
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1. INTRODUCTION 
The whole process of digital image processing is the method of 

processing of an image with the implementation of computer 

algorithms. As we all know that digital image processing is 

evolved from processing of digital signal, it contains a lot of 

merits in the event of making comparison with the analog image 

processing; it allows a considerably measure of broad extent of 

algorithms that can be used to apply on the input data and during 

the processing time, it can overcome the issues such as the noise 

build-up and signal distortion. The process of configuring the 

partition of a digital image into several regions (set of pixels) is 

being referred to the image segmentation [1]. The primary goal 

of this is of simplifying, rearranging and/or modifying the 

image representation into that which is of high importance and 

it is simpler to make it examination. We normally use 

segmentation of image is to find boundaries and objects (lines, 

curves, etc.) in an image.  

The process of recovering error free image from noisy image is 

termed as Image denoising. For a majority of time, we are not 

able to restore original image and because of this, we adopt 

methods like noise suppression. The previous methods that 

works on the basis of linear and non-linear filters are not quite 

effective, so preference is given to the algorithms based 

methods based on iterative approach. However, these methods 

are also not very fruitful in the case of complex noises. The 

reason behind this failure is under and over fitting [2-6].  
With the latest advancements, an approach that works on the basis of 

BM3D for removing noise is presented. This approach works with 

arranging 2D blocks of image segments in 3D arrays. Collaborative 

filtering is implemented in these arrays [7-11]. This is accomplished 

in the following three steps: 3D transformation of a group, shrinkage 

of transform spectrum, and inverse 3D transformation. 
The purpose of denoising is carried out by shrinkage of the 

spectrum of a 3-D transform which is applied on such sorts of 

groups. The extent of impact of the shrinkage relies on the 

capability extent of the transform to sparsely represent the true-

image data, hence making its separation from the noise. We can 

improve the sparsity can be in two aspects. The first one is by 

employing image patches (neighborhoods) which contain data-

adaptive shape. The other one is by making use of PCA on the 

above mentioned adaptive shape neighborhoods as a part of the 

employed 3-D transform. We can get the PCA bases are by 

eigenvalue decomposition of empirical second-moment 

matrices the estimation of which is carried out from groups of 

similar adaptive-shape neighborhoods [11-13]. 

 

2. BM3D Principal Component Analysis 
This section describes the BM3D process in detail, and 

thereafter use of principal component analysis in noise 

reduction is detailed. 

 

2.1 Grouping and Matching: 

We can define Grouping with the help of numerous techniques 

such as, Kmeans clustering, self-organizing maps, fuzzy 

clustering, vector quantization, and many others. Normally, we 

compute the similarity between signal fragments as the inverse 

of some distance measure. Therefore, a small measure of 

distance implies higher similarity. A number of different 

distance measures could be used to employ such as the p-norm 

of the difference between two signal fragments. Alongside 

other examples are the weighted Euclidean distance (p = 2) 

applied in the case of non-local means estimator [10], and too 

the normalized distance which is used in the exemplar-based 

estimator [11].  

In the event of carrying out the processing of complex or 

uncertain (e.g. noisy) data, we must first extract certain features 

from the signal and after this we take the measurement of the 

distance for just these features. Some techniques of grouping 

such as vector quantization or Kmeans clustering are 

necessarily based on the concept of partitioning. It implies that 
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they develop clusters or groups (classes) which are disjoint in 

such a manner that each one of the fragment belongs to just one 

group only. In the process of constructing disjoint groups, the 

elements of which enjoy great mutual similarity generally needs 

recursive methods and it could be computationally demanding. 

In addition, the partitioning results in an unequal treatment of 

the various fragments due to the reason that the ones which are 

near to the group’s centroid are better represented in a better 

way in comparison to those lying far from it. This takes place 

forever without the exception of the uncommon case in which 

each fragment of the signal is equidistantly placed. 

A more straightforward and fruitful grouping of mutually 

similar signal fragments can be noticed by matching, where in 

contrast to the above mentioned partitioning procedures, the 

developed groups are not disjoint in the mandatory basis. The 

process of matching could be defined as a method for 

discovering signal fragments just like to a provided reference 

one. 

This could be achieved by pair wise examination of the 

similarity between the candidate fragments and reference 

fragment situated at various spatial positions. The fragments 

with a considerable small distance from the reference one in 

comparison to that of a given threshold are accepted as mutually 

similar and are grouped. This similarity is the basis of the role 

of the membership function for the group which is considered 

and the reference fragment can be considered as certain kind of 

centroid for the group. 

We can use any signal fragment as a reference one and due to 

this a group can be developed for it. 

Block-matching (BM) is a dedicated matching process that has 

been applied in a broad scale for the purpose of motion 

estimation in video compression. As a particular method of 

grouping, it is applied to hunt similar blocks, which are 

afterwards grouped in a 3D array (i.e. a group).  

 

2.2 Collaborative Filtering: 

Provided a collection of n fragments, this filtering of the group 

develops n estimates. For each of the grouped fragments, it 

develops one estimate. Generally, the above mentioned 

estimates are not same. The term collaborative is derived from 

the sense that all grouped fragments collaborates for making the 

filtration of all others, and vice versa. 

Due to the reason that the corresponding noise-free blocks are 

considered to be not different, the estimates are unbiased. 

Consequently, the last estimation error is caused only because 

of the residual variance. This residual variance is inversely 

proportional to the blocks number in the group. 

Ignoring the complexity of the signal fragments, we can get 

quite good estimates given that the groups comprise a great 

measure of fragments. 

Though, perfectly indistinguishable blocks are not similar in 

natural images. In the event of non-identical fragments are 

permitted inside the same group, the evaluation acquired by 

element wise averaging get to be biased. The error of bias can 

represent the biggest part of the whole last error in the 

appraisals, unless an estimator is used that takes into account 

for creating a dissimilar estimate of all grouped fragments. In 

this way, a more successful collaborative filtering methodology 

than averaging should be utilized. 

2.3 Collaborative filtering by shrinkage in transform 

domain: 

A more productive collaborative filtering could be 

acknowledged as shrinkage in transform domain. Taking in 

assumption d+1-dimensional groups having similar signal 

fragments are as of now developed, the collaborative shrinkage 

comprises of the accompanying strides. 

1. A d+1-dimensional linear transform is applied to the group. 

2. Shrinking of the (e.g. by soft- and hard-thresholding or 

Wiener filtering) transform coefficients which leads to the 

attenuation of noise. 

3. In order to develop estimates of all grouped fragments make 

the inversion of the linear transform. 

The above discussed collaborative transform-domain shrinkage 

can be especially fruitful in the event of applying to groups of 

fragments of natural image. The groups are featured by both: 

1. intra-fragment correlation value which shows up between the 

pixels of each grouped fragment a peculiarity of natural images; 

2. inter-fragment correlation which appears between the 

corresponding pixels of various fragments - an output of the 

similarity between grouped fragments. 

The 3D transform can count the benefits of both sorts of 

correlation and therefore create a sparse representation of the 

genuine group’s signal. This sparsity turns the shrinkage 

exceptionally productive in weakening the noise at the time of 

safeguarding the elements of the signal. 

The complete process is shown in Figure 1. 

 

 
Figure 1: Noise Filtering Process 

 

3. MATHEMAICAL DESCRIPTION 
Let us assume a noisy image z of the form 

( ) ( ) ( )                       z x y x n x x X                            (1) 

In this equation, x is a 2D spatial coordinate that belongs to the 

image domain x, y is the genuine image, and n is i.i.d. zero 

implies to the Gaussian noise with variance 2 , i.e., 2(0, )N  . 

Let us consider, xZ  is of constant size 
1 1N N positioned at x  

in z . 
SZ  is a 3D array comprised blocks 

xZ  situated at x . We 

make use of ‘ht’ for the purpose of hard-thresholding and ‘wie’ 

for Wiener filtering. The primary and last estimates are 

provided by 
basicy and 

finaly  respectively. 

 

 

Grouping and collaborative hard-thresholding: 
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Blocks that have the separation (dissimilarity) in terms of the 

reference one is not greater than a pre-defined threshold are 

viewed similar and gathered. Specifically, we apply the 
2L -

distance as a measure of dissimilarity. Preferably, in the case of 

the true-image y would be accessible, we can figure out the 

block distance as 
2

2
2

1

( , )
( )

xR xideal
xR x ht

Y Y
d Z Z

N


                                          (2) 

In this equation, .  represents the 
2L -norm and the blocks xRY  

and xY  are respectively situated at xR and x X  in y. 

Although, only the noisy image z is accessible and we can 

calculate the distance with the help of the noisy blocks xRZ  and 

xZ  as 

2

2
2

1

( , )
( )

xR xideal
xR x ht

Z Z
d Z Z

N


           (3) 

Be that as it may, this matching is, to a great extent, 

computationally complex. In order to overcome this issue, the 

block-distance utilizing a coarse pre filtering is recommended. 

The above discussed pre filtering is acknowledged by applying 

a standardized 2D linear transform on both blocks and 

afterward hard-thresholding the acquired coefficients, which 

brings about 

 

     
2

2 2
2

2
1

( , )
( )

ht ht
D xR D x

xR x ht

T Z T Z
d Z Z

N

 
               (4) 

In the above equation  is defined as the hard-thresholding 

operator with threshold 2D  and 2
ht
DT represents the 

standardized 2D linear transform. The blocks that are identical 

to xRZ is 

 : ( , )ht ht
xR xR x matchS x X d Z Z                                   (5) 

Here,
ht
match  is pre-defined hard threshold. 

The inverse 3D transform is provided by 
1

3 3( ( ))ht ht
xR xR

ht ht ht
D DS S

Y T T Z


  
 

                                            (6) 

Given the primary assessment 
basicY  of the true image, the 

denoising can be enhanced by carrying out grouping inside this 

fundamental estimate and collaborative empirical Wiener 

filtering. Due to the fact that the noise in 
basicY  is considered 

to be considerably lessened, we supplant the thresholding-based 

d-distance (4) with the standardized squared 
2L -distance 

estimated inside the primary estimate. Consequently, the 

matched blocks’ coordinates are the components of the set  

 

2

2
2

1

:
( )

basic basic
xR xwie wie

xR matchwie

Y Y
S x X

N


  
   
 
 

                    (7) 

We make use of the set 
wie
xRS for the end goal of forming two 

groups. Out of these two, one will be from the basic estimate 

while the other one from the noisy observation:

 

The empirical Wiener shrinkage coefficients could be defined 

in terms of the energy of the 3D transform coefficients of the 

group of basic estimate as given here underneath 
2

3

2
2

3

( )

( )

wie
xR

wie
xR

wie
xR

wie basic
D S

S
wie basic
D S

T Y
W

T Y 





                                             (8) 

Finally, the inverse transform 
1

3
wie
DT



develops the group of 

estimates 
1

3 3( ( ))wie wie
xR xR

wie wie wie
D DS S

Y T T Z


  
 

                                        (9) 

With the help of above for hard thresholding (for all Rx X ), 

we could assign the weight 

2

1
,      if 1

1,                 otherwise

xR
harxRht

harxR

N
N




 



                                    (10) 

for the group of estimates 
,
ht
x

ht xR

x S
Y


. Similarly, for wiener 

filtering for each Rx X , we assign the weight 

2
2

2

1

wie
xR

wie
xR

S
W





                                                             (11) 

for the group of estimates 
,
wie
x

wie xR

x S
Y


 

Aggregation by weighted average: We can compute the global 

basic estimate 
basicY  with a weighted average of the blockwise 

estimates 
,
ht
x

ht xR

x S
Y


obtained, by making use of the weights 

ht
xR

illustrated in (10), i.e. 

 
, ( )

( )
( )

ht
xR

m
ht
xR

ht ht xR
xR xm

xR X xm Sbasic

ht
xR x

xR X xm S

Y x

y x
x



 

 

 



 

 
, x X                 (12) 

Here in the equation written above 
mx

 is 0 or 1. The global 

final estimate 
finaly is estimated by making use of the above 

equation in which we replaced each variable ht by wie. This 

method is termed as BM3D. 

 

 

BM3D-Principal Component Analysis: 

In the BM3D-PCA algorithm, input image is being processed 

in raster scan. In this scan, the below mentioned operations are 

carried out at each processed pixel: 

1) Get adaptive-shape neighborhood focused at the present 

pixel by making use of the 8-directional LPA-ICI just like as in 

[7], [4]. The neighborhood is confined inside a constant-size 

and non-adaptive square block, which we known as reference 
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block. We denote The pixels’ number in the neighborhood 

could be defined as
elN . 

2) Look for the blocks that are identical to the reference one 

with the help of block-matching and acquire an adaptive-shape 

neighborhood from all of these matched blocks by making use 

of the shape got in Step 1. We define the number of matched 

blocks by 
grN . 

3) Find out the transform used for the application on the 

adaptive-shape neighborhoods. We got two conditions, which 

depend on the fact whether gr

el

N

N

 is smaller or larger than a pre 

defined threshold τ. 

a) In the case of gr

el

N

N
 , we assume that we got an enough 

quantity of mutually similar neighbourhoods in order to 

estimate a second-moment matrix in a reliable manner. The 

eigenvectors of this matrix frame the shape-adaptive PCA basis. 

Thereafter, only those eigenvectors are retained whose 

corresponding eigenvalues are more than a predefined 

threshold. In this way, we obtain a trimmed shape-adaptive 

PCA trans-form.  

b) In the event of gr

el

N

N
 , we consider that there are not 

sufficient similar neighborhoods to be used as training data and 

in this way, we resort to the fixed (i.e. non data-adaptive) SA-

DCT, just like as in [4]. 

4) Develop a 3-D array (termed as group) by stacking together 

the 
2min( , )grN N adaptive-shape neighborhoods with greatest 

similarity to the reference one, where 
2N  is a pre defined 

parameter that prevents the number of filtered neighborhoods. 

5) Put the transform we obtained in Step 3 on all of the grouped 

adaptive-shape neighborhoods. Afterward, a 1-D orthogonal 

transform in other words Haar wavelet decomposition is 

applied along the third dimension of the 3-D group. 

6) Carry out the shrinkage (hard-thresholding or empirical 

Wiener filtering) on the 3-D spectrum. 

7) Now, invert the 3-D transform from Step 5 in order to get 

estimates for all of the grouped adaptive-shape neighborhoods. 

8) Make the acquired estimates to return to their original 

positions with the help of weighted averaging in the event of 

overlapping. 

 

Trimmed Principal Component Analysis: 

As the primary commitment of the proposed strategy is the 

utilization of the shape- and data-adaptive PCA transform on 

adaptive-shape neighbourhoods’ groups, we clarify in a 

detailed way what is performed in Step 3a, while we allude the 

reader to our past assignments [5], [9], [10],[13] for information 

on the other algorithm steps. The input given in the Step 3a is a 

group of 
grN adaptive-shape neighborhoods that are discovered 

to be mutually identical. Each of these 2-D neighborhoods is 

represented as a 1-D column vector iu  of length 
elN , 

1,2,... gri N  . After this, an 
el elN N sample second-moment 

matrix is estimated by matrix multiplication, 

 

2 2  ...   ... 
gr gr

T

i N i NA u u u u u u   
   

 

1 2( , ,... )
el

T
ND AD B diag b b b   

and thereafter its eigenvalue decomposition produces where D 

defines the orthonormal matrix and B represents the diagonal 

matrix that contains eigenvalues ordered by magnitude 

1 2 ...
elNb b b   . At last, the PCs which are used for the purpose 

of decomposition of the adaptive.shape neighborhoods are the 

initial 
tN columns of D, in which 

tN represents the number of 

eigenvalues more than 2 , λ being a pre defined threshold. 

We can make the evaluation of the performance of the 

algorithm on the basis of the peak-signal to noise ratio and is as 

follows  

 

2

10 1 2

(255)
( ) 10log

( ) ( )
x X

PSNR y
X y x y x





 
 

  
 

 


              (13) 

 

 4. RESULTS 
In the simulation three values 0.7, 1 and 1.3 for τ are considered. 

The value of λ is taken to be 13. The standard variance of noise 

(σ) is taken to be 25. 

From figure 2 to figure 7, in part (a) noisy images are shown 

and in part (b) denoised image is shown. 

 
(a)                                               (b) 

Figure 2:  (a) noised image (b) de-noised image (Airplane) 

 
(a)                                               (b) 

Figure 3:  (a) noised image (b) de-noised image (Barbara) 

 
(a)                                               (b) 

Figure 4:  (a) noised image (b) de-noised image (Baboon) 
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(a)                                               (b) 

Figure 5:  (a) noised image (b) de-noised image (Boat) 

 
(a)                                               (b) 

Figure 6:  (a) noised image (b) de-noised image (Lenna) 

 
(a)                                               (b) 

Figure 7:  (a) noised image (b) de-noised image (Peppers) 

In these figures, image is corrupted by Gaussian noise with 

sigma considered to be 25.  

 
Figure 8:  Comparison of PSNR (dB) at  equals 25. 

The obtained PSNR of the denoised images is shown in figure 

8. Over here, the PSNR of the most of the images is around 32 

dB. However, the PSNR of Baboon image is nearly 25. 

 
Figure 9:  PSNR vs. Sigma for Airplane image 

In figure 9, PSNR vs. sigma is plotted for Airplane image. For 

sigma value of 1, the PSNR is nearly 49 dB, and at the sigma of 

25, the PSNR is nearly 32 dB. Initially fall in PSNR is huge 

with sigma, but when sigma reaches a value of 10, the PSNR 

value is 36 dB, thereafter fall in PSNR with respect to sigma is 

very slow. 

In figure 10, PSNR vs. sigma is plotted for Baboon image. For 

sigma value of 1, the PSNR is nearly 48 dB, and at the sigma of 

25, the PSNR is nearly 25 dB. Thus, noise reduction is Baboon 

image is lesser in comparison to Baboon image. 

 

 
Figure 10:  PSNR vs. Sigma for Baboon image 

 
Figure 11:  PSNR vs. Sigma for Barbara image 
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Figure 12:  PSNR vs. Sigma for Boat image 

From figure 11 to figure 14, other images PSNR performance 

is shown and these figures also follow the same trends as other 

images (Figure 9, 10). 

 
Figure 13:  PSNR vs. Sigma for Lenna image 

 
Figure 14:  PSNR vs. Sigma for Peppers image 

 
Table 1. Comparative Study of PSNR (dB) for BM3D and 

BM3D-PCA 
 Noisy BM3D BM3D-PCA 

Airplane     20.18 31.57 31.80 

Baboon 20.16 25.45 25.71 

Barbara 20.16 30.72 31.00 

Boat 20.16 30.62 30.78 

Lenna 20.16 32.05 32.21 

Peppers 20.16 31.98 32.11 

    
In table 1, results for BM3D and BM3D-PCA algorithms are 

compared in terms of PSNR. Results are compared for six 

images while considering σ to be 25. The noisy PSNR of each 

image is 20.16 dB. It is clear from the table that the performance 

of BM3D-PCA is better in comparison to BM3D. 

 

5. CONCLUSIONS 
This paper discusses techniques for noise removal in digital 

images. Block matching in addition with collaborative filtering 

is detailed. The use of PCA in noise reduction is also 

highlighted and resulted algorithm is defined as BM3D-PCA. 

The results of both the algorithms are generated using computer 

simulation. In the analysis, six digital images are considered. 

This has been found that both the algorithms are comparable to 

each other; however BM3D-PCA shows slightly better results 

for most of the images. This happens as PCA only retains the 

eigen values which are very close to principal components, 

which show better similarity with original noise free images. 
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