

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

12

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

 Design of Fault Tolerance block acceleration with customization

approach for power reduction in WSN applications
1Vilabha Patil and 2Shraddha Deshpande

1Research Scholar, Walchand College of Engg., Sangli

Asst. Prof., Dept of E&TC, RIT Rajaramnagar, Maharastra, India
2Dept. of Eectronics, Walchand college of Engg., Sangli, Maharastra, India

 E-mail: 1vilabha.mane@ritindia.edu, 2shraddhha.deshpande@wachandsangli.ac.in

ABSTRACT

The current developments in wireless sensor network (WSN) headed to the implementation of fault-tolerant, low power, and

low-cost wireless sensor nodes. FPGA based soft-core processor becomes an attractive solution to design the sensor node with

the required flexibility. In this paper, we propose a new soft-core processor built an architectural model for WSN nodes based on

the idea of custom instructions. At the architectural level power saving is possible by custom instruction design by exploiting

parallelism. The custom instruction accelerates the time-critical operations as custom hardware logic block. Thus by considering

power saving and fault tolerance factor the effective error correcting code cyclic redundancy check (CRC) is designed as custom

instruction and implemented as a proposed work with NIOSII soft-core processor using linear feedback shift register (LFSR) in

which the data is processed sequentially. It helps to improve the performance with low power fault tolerance in comparison with

the software-only implementation of the respective algorithm. With this customization, the design of CRC is further accelerated

with parallelism, while adding as custom instruction. This acceleration with parallelism leads to significant performance

improvement w.r.t. custom implementation. The overall power efficiency, reprogrmmability, performance and speed of

execution are improved considerably with customization.

Keywords: Fault Tolerance, CRC, NIOSII Processor, Custom Instruction, Acceleration with parallelism

1. INTRODUCTION

 The demand for high-performance WSN node is

growing and its power consumption has threatened the life

of the network. With the recent rapid growth of applications

in the WSN domain, there is a need to provide a better

performance, high flexibility, and scalability. Extending the

life of WSN in each application is significant.

Until now the WSN nodes are based on low power

microcontrollers such as MSP430 [3] and ATmega128

[1,2]. These designs lead to less power consumption but do

not provide necessary scalability and flexibility as per

applications of WSN. Thus the design of sensor nodes with

commercial of the shelf devices like microprocessors and

microcontrollers do have the static functionality. Soft-core

processor [4] based solutions enable preferred scalability

and flexibility with complete customizable capability.

Hence in this paper, the sensor node with soft-core

processor as a processing unit is implemented. Numbers of

soft-core processors are available like Microblaze,

Picoblaze, Leon, and NIOSII. Amongst these NIOSII

processor has a custom instruction facility, i.e. up to 256

custom instructions can be added to NIOSII processor.

Though NIOSII is better for customization, NIOSII soft-

core processor is chosen for implementation.

 Failures will occur predictably because sensor

nodes are arbitrarily installed in an unfriendly nature

environment. Main work in most of WSN application is to

monitor the remote areas and send the collected information

to the destination node. In these applications the data

transmission is affected by environmental factors like noise,

so the data received at the receiver end is different than the

original information signal. Therefore, it is necessary to

consider faults and power consumption issues while

designing WSN sensor nodes [5]. The general idea to

overcome this is to add redundancy bits error correction

techniques.

 Cyclic Redundancy Code (CRC) is most

commonly used in wireless communication as an effective

method for detection of an error in data to be transmitted.

Several software implementations of CRC computations are

realized with the help of processors or controllers [6,7,8].

Though these general purpose processor based systems on

chip designs are highly expensive with inflexible,

inefficient results. It is needed to make this CRC block

configurable so that it will be updated as per application.

The addition of flexibility through reconfigurability is a

method to reduce the cost of design. Field programmable

gate array (FPGA) becomes an attractive option to achieve

flexibility and configurability. Fully FPGA based CRC

computation circuit is implemented in [9]. It helps to reduce

the complexity and time of programming. Various hardware

CRC implementations on FPGA have been introduced in

[10,11,12]. However, the combination of hardware and

software leads to improve system performance by the

method known as codesign. In the case of WSN embedded

systems demand is increasing for hardware-software

codesign. Hence we implement the CRC as custom

instruction which introduces codesign. The design aspect

used for CRC calculation is using the most established

method LFSR [13] with shift registers and logic gates. This

mailto:vilabha.mane@ritindia.edu
mailto:shraddhha.deshpande@wachandsangli.ac.in

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

13

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

design performs computation by handling data sequentially.

This custom implementation with LFSR is not appropriate

for today’s high speed WSN applications. The parallel

design can perform faster computation than the serial

design aspect. Thus customization is further modified for

CRC acceleration as custom instruction using parallel

circuit design.

 Parallel CRC is generated by many methods. One

of the methods for implementation of parallel CRC is using

recursive formula [14,15] from serial implementation. In

this number of bits are processed simultaneously

independent on technology. Another method is the

calculation of CRC using byte enable [17] method. It is

faster than bitwise method. In [16] original message data is

systematically decomposed into a set of subsequences using

the theory of Galois field. Lookahead technique is

employed for parallel CRC computation and to speedup the

computation. However, each of the methods has its own

advantages and disadvantages. Some are more suitable for

high speed designs where area required is more. Some are

with compact designs with less speed. The method

introduced in [18] overcome the drawbacks of the above

mentioned methods. In this method parallel CRC VHDL or

Verilog code generation by using practical method is

introduced. The algorithm of implementation is explored in

section 2.3b.

 In this paper, we propose an innovative custom

codesign based design mechanism for the fault tolerance

block in WSN applications. Initially, customization of fault

tolerance block i.e. the design of CRC is done using LFSR.

Later the custom block is accelerated and optimized by the

addition of parallelism to CRC design using a parallel

algorithm mentioned in section 2.3b while adding as

custom instruction. The main contribution of this paper is

customization with parallelism and optimization for fault

tolerance block in WSN applications.

 The aim of this design is to decrease the overhead

of sensor node processing unit, lessen the cost of algorithm

implementation, additionally with increasing the use for

different applications modulating flexibility.

 This paper is divided into six sections. Section 2

presents the overview of technology and algorithm. Section

3 explores the hardware and software used for the design

and implementation. Experimental design flow is illustrated

in section 4. The results are discussed in section 5. Finally

concluding remarks are given in section 6.

2. OVERVIEW

 The approach used in this paper to achieve above

goals is based on soft-core processor NIOS II of ALTERA

FPGA. In this design the fault tolerance i.e. CRC

calculation is implemented as hardware on FPGA with two

aspects. First aspect used is serial calculation and

implementation using LFSR in FPGA and add it as a

custom block to NIOS II processor through software macro.

Further this hardware design and implementation on FPGA

is accelerated using parallelism then, added as custom

instruction to NIOS II processor.

In this section some initial information related to design is

provided as given below:

2.1 NIOS II Processor

 NIOS II is 32 bit configurable embedded soft-core

processor specially designed for ALTERA family of FPGA.

NIOS II’s basic functionality can be extended by adding

custom peripherals or custom instructions. By the addition

of custom instructions, time-critical software operations can

be accelerated as a custom logic block. It has three different

member families like NIOS II/e (economy), NIOS II/f

(fast), and NIOS II/s (standard). Each of these is having a

specific price and performance range. It has pipelined RISC

architecture with isolated 16bit instruction bus and 32bit

databus. The register file is configurable with 128, 256 or

512 registers. Amongst these only 32 registers are

accessible as general purpose registers.

The NIOS II processor and many other components such as

custom peripherals and standard peripherals are integrated

into ALTERA DE2 board to form the total system as shown

in fig.1 CYCLONE IVE FPGA device enable the process of

interfacing the NIOS II processor and peripherals to the

DE2 board. Avalon bus is used to form the interconnection

network by connecting these components.

Figure 1. NIOSII implemented on FPGA

2.2 NIOSII custom instruction

 A custom instruction allows decreasing a complex

sequence of standard instructions to a single instruction

implemented as custom hardware block. As many as 256

custom instructions are added to NIOSII processor. To map

the custom instructions, NIOSII processor uses GNU

compiler collection (GCC). The custom instructions are

accessed through software macro directly by C or C++

application code. The NIOS II processor has four types of

custom instructions like combinational, extended,

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

14

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

multicycle and internal register file. While implementation

of custom instruction specific ports are used as hardware

interface and software interface.

2.3 Cyclic Redundancy Check (CRC)

CRC is the most dominant error detecting code.

Transmitter T sends a sequence of data with N bits like {b0,

b1,….., bn-1} to the receiver. The transmitter generates

another data sequence {b’0, b’1,…b’n-1} to permit the

receiver for detection of data error. Both data sequences are

concatenated and this is divisible by sequence like p = {p0,

p1, …., pm}. When transmitter sends the total data

sequence to the receiver, then receiver divides the data

sequence by p. If the remainder is zero, it is considered as

data with no error.

Figure 2. Block Diagram of CRC

2.3. a. CRC Algorithm using LFSR

 CRC as custom instruction implementation using

most established method linear feedback shift register

(LFSR) [8]. In this approach, the data is processed

sequentially.

1. Build m-bit LFSR

2. Figure out the flip-flops as FF1 on the right side

3. Q output of leftmost flip-flop gives the feedback path.

4. Identify the original polynomial of the form Xm+…+1

5. The X0 =1 term links to associating the feedback

directly to the D input of FF1.

6. Every term of the form Xn links to connecting to an

XOR between FF n and n+1

2.3. b. CRC Algorithm with Parallelism

 CRC custom instruction implementation using

parallel computation approach. In this approach, the data is

processed simultaneously.

1. Initialization

 N = Data width

 M = CRC polynomial width

 e.g. CRC8 with – 7-bit data

 N = 7, M = 8

2. Serial CRC implementation for a given polynomial

3. Implementation of parallel CRC is a function of N-bit

data input and M-bit presents CRC state.

Two matrices are build

H1 = Mout Next CRC state – as a function of input data

(Nin) when Min=0

 Mout = CRC Parallel [Nin, Min=0]

H2= Mout (Next CRC state as a function of Min current

CRC state when Nin=0

 So, Mout = CRC parallel [Nin=0, Min]

4. Build Matrix H1 for N= 4

5. Build matrix H2 for M= 5

6. XOR inputs Min[j] and Nin[j] which give result =

Mout[i]

 2.4 Custom Instruction Block Diagram

 As shown in fig. 3. the better design can be

achieved through custom instruction based paradigm. The

sensor data collected is processed by a custom logic block

designed with the above mentioned aspects. The custom

logic block is designed in hardware adjacent to the

arithmetic logic unit between the datapath of the processor.

Thus it helps to reduce the sequence of instructions into

single custom instruction. These custom instructions are

mapped through the GNU compiler. The macro generated is

directly used in C or C++ code.

Figure 3. Custom Logic Block Diagram

The proposed method in this paper implements Soft-core

processor on FPGA using Quartus tool and Altera

Development board. The Quartus II and QSYS integration

tools are used to design the CRC custom instruction as per

need with less complexity. ALTERA provides various

range of Development board [21] with different feature

such as Cyclone, Stratix edition, the designer can choose

according to the application requirements.

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

15

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

3. HARDWARE SOFTWARE

REQUIREMENTS

 The hardware-software required for system

generation is as explained below:

 3.1 Software

a. Altera Quartus II software version 13.1 or later:

Development of hardware design files can be done with this

software. It is also used for synthesizing netlist for the

design and to download the .sof file to target FPGA board.

b. QSYS integration tool: This integration tool is used to

design the hardware system with the help of components

like processors, I/O interfaces, memories, timers and other

components as per the requirement of application. This

hardware system designed and generated and compiled in

QUARTUSII tool.

c. NIOSII Embedded Design Suite: NIOSII application

software is written using this development tool. Two

approaches are provided to develop the application software

as:

1. The command line interface

2. NIOSII SBT for Eclipse

 3.2 Hardware platform

NIOSII Development board :

 Different board series are present for NIOSII

cyclone series, Stratix series, Arriax series. In this paper, it

is decided to use Altera DE2115 [21] development and

education board with CYCLONE IVE device (fig. 2). This

board has many features that allow the designer to

implement a varied range of circuit designs as per

application.

Figure 4. Cyclone IV E Development Board

4. EXPERIMENTAL DESIGN FLOW

 The experimental system development flow

includes hardware- software design and implementation of

the application.

4.1 Design and develop NIOSII hardware system

 The NIOSII is a soft-core processor that could be

implemented on Altera FPGA. In this, the total hardware

system and software system creation for simple message

display has been done. NIOSII hardware system is built to

display the simple message “Hello from NIOSII”

Design of NIOS II hardware system requires the following

necessary components:

o NIOS II processor core, that’s where the software

will be executed

o On-chip memory to store and run the software

o JTAG link for communication between the host

computer and target

o Hardware (typically using a USB-Blaster cable)

o LED peripheral I/O (PIO), be used as indicators

4.2 Implementation of Custom instruction

 There are two important blocks of the custom

instruction as a customized logic block and the software

macro. The customized logic block is implemented in

hardware for the acceleration of standard logic operations.

During the implementation of custom logic, the software

macro is used to access the accelerated logic through a

software program of NIOS II IDE. The algorithm is

implemented in hardware to accelerate the performance of

algorithm. The NIOS II hardware system is integrated with

the custom logic block and recompiled with QUARTUSII

software.

4.3 Software implementation flow

 The custom instruction generated in system.h is

used for the realization of algorithm in NIOS IDE. This

source program is then compiled using NIOSII build

facility to convert it into executable code.

Experimental design flow is as shown in fig.5.

Figure 5. Experimental Design Flow

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

16

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

5. RESULTS AND DISCUSSIONS

 In this work DE2-115 board of ALTERA is used

for implementation with Cyclone IV E computational

device. The proposed QSYS design consists of a NIOSII

processor, On-chip Memory, JTAG UART and

performance counter to measure the cycle count.

Additionally, the custom instructions generated CRC8,

CRC16, CRC32 are also interconnected in QSYS design.

The basic hardware design is as shown in fig.6.

Figure 6. Interconnect Logic in Qsys

After successful compilation of system with custom

instruction, hardware generation is done with cyclone IV

Altera FPGA. Subsequently generation of system hardware,

the algorithm is implemented with the help of custom

instruction in NIOS IDE. Hence the project is built with the

help of build project command. After a successful build of

the project, the C program is run by command run as

NIOSII hardware. The result is displayed on the NIOSII

console window as shown in fig. 7. The result includes

CRC value with performance parameters like clock cycle

count and execution time of the respective algorithm.

Figure 7. NIOS II IDE

The results of custom instruction based approaches are

compared with software only implementation code with

NIOS II processor, based on the parameters likes power

consumption, clock cycle count and time of execution with

performance improvement.

The power analysis of custom instruction added to the

NIOS II processor has been done with the help of

powerplay analyzer tool of Quartus II.

Total power dissipation is divided into two main parts

Ptotal = Pdynamic + Pstatic

Static power (Pstatic) is power consumed while there is no

circuit activity. Dynamic power (Pdynamic) is the user design

power due to input data pattern and logic design internal

activity, hence Pdynamic power is considered for analysis and

comparison.

The power consumption comparison is done for both

aspects i.e. custom instruction with the serial aspect and

accelerated custom instruction with parallelism. The power

analysis with both NIOS II processor versions like

NIOSII/e (economy) and NIOSII/f (fast) for different

lengths of CRC is as presented in Table 1.

Table 1.Comparison of Power consumption

Custom

instruct

ion

Software

only

Implement

ation (mw)

Custom

Implementati

on

(mw)

Custom

Impleme

ntation

with

parallelis

m

(mw)

 E F E F E F

CRC8 0.95 1.15 0.84 1.08 0.74 1.01

CRC16 0.95 1.15 0.86 1.11 0.75 1.04

CRC32 0.95 1.15 0.90 0.97 0.76 1.00

From the power analysis results, it is observed that the

power required for execution of CRC without custom

instruction i.e. software-only implementation is improved

by 11% as compared to CRC with custom instruction i.e. in

hardware. As well as the power required for the custom

instruction design with parallelism is less as compared to

the initial custom instruction approach i.e. the parallel

aspect can reduce the power dissipation by 6%. From the

analysis, it is observed that customization can save the

power of soft-core processor.

fig. 8. and fig.9. compares the power consumption of

diverse lengths CRCs computed with both versions of

NIOS II processor E and F using the software only

implementation, custom implementation and custom

implementation with parallelism.

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

17

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

Figure 8. Comparison of power consumption for NIOS

II(E) processor

Figure 9. Comparison of power consumption for NIOS

II(F) processor

Execution time and clock cycle count required for all

implementation i.e. for software only implementation,

custom implementation and acceleration of custom block

with parallelism approach are used as a performance metric

in order to identify the improvement achieved with

customization in comparison with software-only

implementation. The evaluation parameter results of CRC

are as shown in Table 2.

Table 2. Comparison of clock cycles and execution time

Custo
m

Instru

ction

Clock Cycles

Execution Time(µsec)

 Soft

ware

only
Impl

emen

tatio
n

Custom

Implem
entatio

n

Custom

Implem
entatio

n with

Parallel
ism

Softw

are
only

Imple
menta

tion

Custom

Impleme
ntation

Custom

Implemen
tation

with
Parallelis

m

 E F E F E F E F E F E F

CRC8 387 82 46 20 40 20 7 1 0.92 0.4 0.8 0.4

CRC16 739 138 47 27 40 17 14 2 0.94 0.54 0.8 0.34

CRC32 1050 157 70 44 40 14 21 3 1.4 0.88 0.8 0.28

The results from Table 2 shows that acceleration of

algorithm as custom instruction is about 84% faster than the

software only implementation. The results with custom

instruction drastically improve the performance than

without custom instruction aspect of implementation.

Additionally, the parallel circuit based custom instruction

approach of this research has a comparable improvement in

execution time and clock cycle count than the serial aspect

of custom instruction implementation. Thus acceleration of

custom block with parallelism reduces the cycle count by

27% as compared to custom block implementation with

serial aspect. Such improvement is possible due to the

acceleration of algorithm with hardware-software codesign.

fig. 10 and 11 compares the execution time of diverse

lengths CRCs computed using the software only

implementation, custom implementation and custom

implementation with parallelism for both versions of NIOS

II processor.

Figure 10. Comparison of execution time for NIOS II(E)

processor

Figure 11. Comparison of execution time for NIOS II(F)

processor

To estimate the increase in speed provided by

customization, execution cycle count of custom

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

18

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

implementation is compared with that of custom

implementation accelerated with parallelism.

𝑅𝑖𝑠𝑒 𝑖𝑛 𝑠𝑝𝑒𝑒𝑑 =
𝑋

𝑌

X=Number of clock cycles required for custom

implementation

Y=Number of clock cycles required for custom

implementation with parallelism

Table 3. Speed Improvement

Custom Instruction Rise in Speed

CRC8 1.15

CRC16 1.175

CRC32 1.75

From Table 3 it is noticed that the speed of custom

implementation is accelerated due to parallelism.

Performance Results:

The performance of different lengths of CRCs

customization depends on processor clock cycles required

for CRC custom implementation. The performance of both

custom implementations for different lengths of CRCs can

be calculated as,

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝐹𝑛

𝐶𝑛

 𝐹𝑛 = NIOS II processor clock rate (50MHz)

 𝐶𝑛 = Number of processor clock cycles required

for

 given length of CRC Computation

From the computation, it is detected that overall

performance decreases with rise in length of CRC,

however, the performance of custom implementation

accelerated with parallelism is much higher than the custom

implementation with serial aspect.

Figure 12. Performance comparison of custom

implementation w.r.t. custom implementation with

parallelism

From Fig. 12 it is noticed that the proposed acceleration in

custom implementation with parallelism drastically

improves the performance.

The synthesis details are given in Table 4. As illustrated in

this table the custom implementation uses more FPGA area.

Utilization of FPGA logic is related to its circuit size. It is

reasonable to say that the circuit size of custom

implementation is larger than the software only

implementation. It is a trade-off between hardware

utilization and performance.

Table 4. Hardware resource utilization

 Custom

Instructio

n

Total

Logic

element

s

Total

combinational

functions

Software only

implementation

CRC8 2021 1104

CRC16 2021 1104

CRC32 2021 1104

Custom

instruction

implementation

CRC8 2200 1173

CRC16 2224 1187

CRC32 2217 1197

6. CONCLUSION

In this paper, the problem of fault tolerance and

power consumption in WSN node has been resolved with

the acceleration of CRC algorithm. The acceleration of

CRC algorithm is addressed by custom instruction

paradigm. The custom block CRC have been implemented

using serial circuits called LFSRs and designed as custom

instruction of NIOS II processor. It improves the

performance drastically as compared to software-only

implementation. Power reduction of 11% is achieved as

compared to software only implementation in addition with

78 % of performance improvement in terms of clock cycles.

Further, the custom implementation is accelerated and

optimized with parallelism in CRC code hardware block. In

comparison with an initial custom implementation,

experiment and performance analysis shows that the

parallelism gives the speed improvement by 11% along

with power reduction by 6% w.r.t custom implementation.

Overall performance improvement due to this custom

design is 89% with 13% power saving. It would be very

useful to reduce the overhead of processing unit in WSN

nodes and adaptable to any WSN application.

REFERENCES

 [1] Atmel Corporation. (2007) ATmega 103L 8-bit AVR

Low-Power Microcontroller. Tech. Report.

 [2] Atmel Corporation. (2009) ATmega 128L 8-bit AVR

Low-Power MCU. Tech. Report.

 [3] Texas Instruments.(2009) MSP430 User Guide. Tech.

Report.

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 12-19, FEB 2021 Int. j. inf. technol. electr. eng.

19

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1
February 2021

[4] V. S. Patil, Y. B. Mane and S. Deshpande,”FPGA

Based Power Saving Technique for Sensor Node in

Wireless Sensor Network (WSN)”, In Computational

Intelligence in Sensor Networks (2019),pp. 385-404,

Springer, Berlin, Heidelberg.

[5] N.A.Alrajeh, U. Marwat, B. Shams, and S.S.H.

Shams, “Error correcting codes in wireless sensor

networks: an energy perspective”, Applied

Mathematics & Information Sciences, (2015), 9(2),

p.809.

 [6] D.C.Feldmeier, “Fast software implementation of error

detection codes”, IEEE/ACM Transactions on

networking, (1995). 3(6), pp.640-651.

[7] J.R. Engdahl, and D. Chung, “Fast parallel CRC

implementation in software”, In 14th International

Conference on Control, Automation and Systems

(ICCAS 2014) , October , pp. 546-550,

 [8] Zhisheng, W.Z. L.Y.Y. “Design and implementation

of CRC algorithm”, Journal of Electronic

Measurement Technology, (2007) -12.

 [9] T. Zhang, and Q. Ding, “Design and Implementation

of CRC Based on FPGA”, In 2011 Second

International Conference on Innovations in Bio-

inspired Computing and Applications(2011),

December -pp. 160-162, IEEE.

[10] W.M. El-Medany, “FPGA implementation of CRC

with Error Correction’’, In The Eighth International

Conference on Wireless and Mobile

Communications,(2012), ICWMC.

 [11] C. Anton, L. Ionescu, I. Tutanescu, A. Mazare, and

G. Serban, “FPGA-implemented CRC algorithm”,

In 2009 Applied Electronics , pp. 25-29, IEEE.

[12] C. Toal, K. McLaughlin, S. Sezer, and X. Yang,

“Design and implementation of a field

programmable CRC circuit architecture”, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, (2009),17(8), pp.1142-1147.

[13] Tutorial: Linear feedback shift registers, EE times

 [14] G.Albertengo, and R., Sisto, “Parallel CRC

generation”, IEEE Micro, 10(5), 1990. pp.63-71.

 [15] G. Campobello, G. Patane, and M. Russo, “Parallel

CRC realization”, IEEE Transactions on

Computers, (2003),52(10), pp.1312-1319.

[16] R.J.Glaise, “A two-step computation of cyclic

redundancy code CRC-32 for ATM

networks”, IBM Journal of Research and

Development, (1997), 41(6), pp.705-709.

 [17] A.Perez, “Byte-wise CRC calculations” IEEE

Micro, (1983), 3(3), pp.40-50.

 [18] E. Stavinov, “A practical parallel CRC generation

method”, Circuit Cellar-The Magazine For

Computer Applications, (2010.), 31(234), p.38.

AUTHOR PROFILES

Vilabha S. Patil was born in Kolhapur, India, in 1982.

He received the B.E. degree in Electronics engineering

and M. Tech. in Electronics Technology from the Shivaji

University, Kolhapur in 2003 and 2010 respectively. He

is pursuing a Ph.D degree in Electronics Engineering

under A.I.C.T.E.Q.I.P. scheme at Walchand College of

Engineering (Govt. aided and an Autonomous Institute)

affiliated to Shivaji University, Kolhapur, MH India.

Since 2010, he has been an Assistant Professor in the

Electronics Engineering Department, Rajarambapu

Institute of Technology, Rajaramnagar, MH-India.

Shraddha Deshpande was born in Miraj, Maharashtra,

India in 1962. She received her Bachelor Engineering

(B.E.) and Masters (M.E.) degree in Electronics Engg.

from Walchand College of Engineering, Sangli, Shivaji

University, Kolhapur. She has received a Ph.D. degree in

2010 from Indian Institute of Technology, Bombay. MH

India. She has 32 years of experience in teaching.

Currently she is working as Professor at Electronics

Dept., of Walchand College of Engg.,Sangli. She has

received approximately 60 lakhs grant from AICTE in

various heads like conference, FDP, RPS, MODROB.

She has good number of publications in journal and

conferences. (11-international Journals, 2-Book Chapters,

9-International conference, 2- National conference, 3-

submitteed for international conference

