

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

25

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

Multi-Stage Change Data Capture for Files Based System Using Spark ETL

Engine
1Mohammed Muddasir N, 2Raghuveer K and 3R Dayanand

1Asst. Prof, Dept. of IS&E, VVCE, Mysuru, India
2Principal, NIE, Mysuru, India

3 Technical Director

E-mail: mohammed.muddasir@vvce.ac.in, raghunie@yahoo.com, Dayanand_7@yahoo.com

ABSTRACT

Real time analytics in the age of web2.0 comes with challenges particularly for data integration systems like Extract Transform

Load (ETL) systems. ETL systems should adapt solutions based on distributed system and parallel processing to handle huge

volumes of data having various formats and generated at a faster rate (big data). Spark based ETL engine has been used as an

alternative for traditional ETL too to handle big data. Spark is used for data integration in a distributed environment where the

data resides on cluster of computers like hadoop distributed files systems (HDFS). This paper focuses on change data capture

(CDC) in a files based system without the support of CDC solutions provided by relational database management systems

(RDBMS). In an enterprise RDBMS CDC solutions based on triggers, snap shots are provided and developers have to leverage

on these to identify and move changed data. In a big data environment custom solutions are needed because the technological

advancements to address specific issues like slowing changing dimension (SCD), CDC are limited. This works comes up with a

CDC solution on spark ETL engine using the concept of self-join implemented on a scala shell for a file based system. We also

propose and show results of a multi-stage CDC to reduce the efficiency in execution of self-join operations by reducing the

number of comparison required to identify the modified data.
Keywords: Change data capture, Data warehouse, big data, Extract Transform Load

1. INTRODUCTION

Extract Transform Load (ETL) in the advent of big

data brings in new challenges and requires novel solutions to

address characteristics of big data such as volume, velocity

and variety[1]. Extraction of data in transactional databases

was driven by capabilities of the database management

systems that would be tailored for data warehousing needs.

Transformation was also dependent on custom codes that are

built using structured query language (SQL) or using

standardized data integration tools like Talend, Pentaho

Kettle etc. Loading was with the support of data warehouse

solutions provided by database management system vendors.

Conventional ETL tools that were good for handling

relational database do not suffice for handling big data and

hence requires new solutions based on distributed file

systems and Map-Reduce programming paradigm[2][3].

Focusing on data warehouse specific functionalities like

slowly changing dimensions (SCD) and change data

capture(CDC) requires special attention in case of big data.

This work is about CDC in big data using multi-

stage approach. In case of structured sources transactional

data management systems employ a push approach where in

the changed data are extracted from the source using the tools

and custom code for the particular data management system.

Here the data extracted is given as a output file and it’s the

data warehouse job to integrate this file with the existing

data. Change data capture for unstructured sources (big data)

is based on the pull approach that is to query the source at

regular intervals. Various ways to pull data to identify

changed data [4] can be listed as follows; audit columns, row

difference comparisons, modified time column for each of

the sources etc. Every approach has a several challenges

depending upon the information available. Example in times

stamp based approach an atomic unit of data needs to be

presented with a modified time. In hash based approach

appropriate hashing functions needs to be available for

pulling out the changed data. In this work we focus on time

stamp based change data capture where in the assumption is

every row that is modified shall be updated with the latest

modified date and time. The problem we identified is in the

execution efficiency of time stamp based CDC. The data

from the source needs to be compared with the data

warehouse contents to identify and move changed contents.

This could be achieved using a staging area where newly

arrived data is compared using self-join concept with the

existing data in the stage and pick the rows that were newly

added as well as those that were recently updated and move

them all to the data warehouse. Here the issue is every time

the new files arrives self-join needs to be executed.

The approach we propose is to reduce the number of

times self-join is executed by waiting. Here we have to wait

for two or more files to arrive and then combine their

information into the staging area one and perform the self-

join operation with the previous data in staging area two

hence making it multi-stage CDC. This helps in improving

the execution time and makes the process of performing

mailto:mohammed.muddasir@vvce.ac.in
mailto:raghunie@yahoo.com
mailto:Dayanand_7@yahoo.com

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

26

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

CDC much faster. The results show that combined data files

results in much better CDC timing than separate data files.

We have implemented a spark based ETL engine where in

data frames are used for holding the staged data. Combine

two or more files into a single data frames before performing

CDC. The idea of performing change data capture using self-

join requires a comparison of n rows with another n rows of

the same relation. If the data is present in a single data frame

the self-join is done only once and it requires for n2

comparisons. If combined approach is not used then the

comparison has to be done for every new file. Suppose two

files arrive separately then each file content is self-joined

with staging area content twice, assuming equal rows in the

two files arrived the comparison would be 2 times n2. If the

number of files increase so does the number of times

comparisons that have to be done increases. Hence we show

that multi-stage approach to wait for many files to arrive and

then perform self-join to extract changed data is a better

approach.

2. RELATED WORK

ETL and big data have been the focus of research

for many academicians in recent times. Every work focuses

on certain issues that could address challenges of faster

execution, modeling, scalability etc.

A work using map reduce for handling ETL was

done by authors of [5]. They use parallel dimensional frame

work to address slowly changing dimensions (SCD). They

combine offline and online dimension schema for better

scalability. Offline dimension help to reduce direct

interaction with the data warehouse they are stored on a

distributed system and are partially brought into the main

memory for a faster lookup during fact processing. Similar

work by the same authors to address slowing changing

dimension was called cloud based ETL[6].The novelty of

cloud based ETL is co-locate data for a specific purpose. The

authors of [7] have adopted hash based CDC where in two

tuples are compared for equality of their keys and hash

valued. If both the equations evaluate to true then the tuple in

comparison would be rejected as it was not modified or

added after the previous incremental load. However if the

keys match and hash value do not match then it means the

tuples have a different values in source and data warehouse

and hence concluded to be modified. This modified tuples is

the candidate for change data capture. The novelty of their

approach is computing the hash value using cyclic

redundancy check.

Partitioning and parallelization of ETL was done in

[8] where a frame work consisting of data flow designer,

practitioner, task planner component manager and meta data

model are used to optimize the process. Modeling ETL to

handle volume characteristic of big data was done by authors

of [9]. They use anticipation during early stages of ETL for

parallelization and distribution to increase processing speed.

Transformation part of ETL is done using two phases map

and reduce. The work by authors of[10] is about automatic

scalability of ETL to handle small and big data. They have

come up with architecture for automatic scalability which

comprises of performance monitoring sub system,

configuration sub system, universal data warehouse manager,

scheduler and pool of nodes that could be added for scaling

up and removed for scaling down. Handling data that arrive

late to populate slowing changing dimension was proposed in

[11]. They use two levels of staging because to handle late

arriving or early arriving data needs a platform to rest. By

having two staging areas ETL flexibility is achieved along

with minimal intervention of the data warehouse.

The authors of [12] propose two phase map reduce

to solve data warehouse problem related to big data. Joining

dimension and facts are required to populate the data

warehouse and hence if the data sizes are huge this is a

performance bottle neck. Two phase map reduce to perform

aggregations on mappers and processes intermediate results

on reduces. Mappers and reduces are separated for facts

known as fact mappers reducers, dimension mappers and

reduces. CDC based on differential snap shot is implemented

in [13]. Change data capture in big data based on snap shot

requires to compare huge number of attributes and hence a

time consuming process. The problem of increase in data

volumes was handled using a distributed file system

approach that was used to store full extracted data as silos on

a hadoop distributed file system (HDFS). Outer join

operations of SQL spark was used to implement CDC.

Streamed data sources are handled using balance

optimization techniques in [14]. Balanced optimizer

minimizes data movement, uses optimization solutions

available are source and destination, and maximizes parallel

processing.

Through the literature survey we have explored on

various aspects of ETL that are handled for big data by

various authors through last decade. We could only find two

papers related to CDC [7] [13], one paper using hash based

function to identify changed row and other uses snap shot for

identifying changed data. In this paper we use time stamp

based CDC and also implement a novel two stage approach

to reduce the comparison efficiency.

3. CHANGE DATA CAPTURE

ILLUSTRATED

The techniques of change data capture (CDC)

retrieves the data from the source that which is updated

(insert, update, delete). In the below Fig1 shown is a glimpse

of the scenario. Source has got two files Day1 data and Day2

data. Day1 data has 5 tuples and Day2 also has 5 tuples.

Assuming that Day1 data is already in the data warehouse

Day2 data needs to be combined with Day1 data. Tuples

highlighted with red color in Day2 are those tuples that

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

27

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

match with the existing tuples in Day1 that are highlighted in

green color. The CDC would retain the latest entries for

similar rows i.e. in this case tuples with SSN 2 and 3. Day1

data needs to be replaced for the tuples with SSN 2 and 3.

Also the newly added data in Day2 needs to be present at the

data warehouse. The implementation is achieved by

combining the data from Day1 and Day2 into a staging area

as a single table. Now staging area contains total of 10 tuples

5 each from Day1 and Day2. In the staging area the table is

made to perform a self-join on SSN. Self-join output will be

10 tuples that match 10 SSN values each from two copies

with 12 columns viz(SSN, Name, Age, PHNO, Sal, Modified

data) from two copies of the table. Next is to group the data

for second copy on SSN and select maximum value of date.

Finally the first copy of the table is made to filter SSN that

match the max modified date from the second copy of the

table. Final result as seen in the data warehouse table is 8

rows, by eliminating repeated rows and retaining all the

newly added rows.

Fig1: Illustration of CDC

The above techniques is a time stamp based

CDC[15][16], in which it’s mandatory to have the changed

time stamp of each row. The implementation using big data

technologies like hadoop , spark and scala was done to

improve on the existing technique. The code was written in

scala and ETL pipeline was spark. The below code snippet

assigns a sequence of structured data to a dataframe[17]. The

dataframe name is empDF and has 10 rows i.e. 5 row each

for Day1 and Day2.

3.1 DATA FRAMES AS STAGING FOR CDC

Data frame contents having 10 rows is shown in

below Fig2. Output of the CDC based on time stamp for two

days data is shown in the below Fig3. The output shows only

8 rows out of 10 rows indicating 2 rows that were duplicates

have been discarded based on max modified date. So the old

5 rows and newly added 3 rows sum up to 8 rows.

Fig2: Two days data combined in a single data frame

(staging)

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

28

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

Fig3: Two days data self-join CDC

Next Fig4 shows continued data arrival for Day3.

Staging table already contains 10 rows from Day1 and Day2

now after combining with Day3 there are 15 rows. After the

self-join operation because of repetition of certain rows only

the latest modified and inserted rows are retained as shown in

Fig5. Day4 data is now being integrated and CDC logic is

performed as shown in Fig6and Fig7 respectively. As

compared to joining two days data joining third day and

fourth day data took a little extra time in milliseconds. So the

results show that as the data keeps on arriving it’s placed in

stage table and CDC is performed. The illustration was made

using days as interval for arrival of files. In real time it could

be possible that the files arrive at every hour or after certain

minutes. If the CDC solution is to put the file content on to

the staging area and perform self-joins for getting changed

data, then we have identified a problem.

3.2 PROBLEM IDENTIFICATION

The problem is increase in the number of

comparisons required every time CDC is computed. The

reason of increase in number of comparison is explained as

follows. Initially the data in the data frame is 10 rows. Later

in the day two times updated files were received and each file

needs to be joined with the data frame. Each updates files

contains 5 records for illustration purpose. If the first file is

update with initial file using a single data frame then it

requires 15 multiplied by 15 i.e. 225 comparisons. Later the

second file is updated with previous processed 15 records

that requires another 20 multiplied by 20 comparisons i.e.

400 comparisons. In total the two files are compared

separately with the initial data requires 225 plus 400 i.e. 625

comparisons. The proposed method is to combine the two

file contents before placing them into staging area. By this

only 20 records are placed in staging area 5 records each

from two files. This would reduce the number of comparison

because now the staging area contain only 20 records from

both the files and only these 20 records needs to be self-

joined to get the changed data. Thus by this approach as

explained in the previous case instead of comparing 15X15

records and later again comparing 20X20 records only

20X20 records needs to be compared..

Fig4: Three data files 15 rows (staging)

Fig5: Three data files CDC using self-join

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

29

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

Fig6: Four data files 20 rows

Fig7: Comparing proposed approach with previous approach

3.3 PROPOSED SOLUTION

Our claim is supported by the experimental results

shown in Fig5 and Fig7. Three file combined in staging area

contains 15 records as shown in Fig4 (files 3 contains 5

records and integrating it with the staging data containing 10

rows) and perform CDC takes 1167ms. Again after the

arrival of file4 again containing 5 records and integrating it

with the stating data and performing CDC takes 1226ms. The

approach proposed is if there is a little difference in time of

arrival of file3 and file4 the entire CDC could be done in

1226ms instead of integrating and performing CDC on file3

and file4 separately. But this has to be done if the interval of

arrival of file is less than the total time taken for performing

two separate CDC operations. If the interval of arrival is

reduced then because of requirement of real time analytics

separate CDC needs to be done.

4. IMPLEMENTATION

Approach to combine data into staging before

performing CDC was implemented on TPC-DS [18]bench

mark dataset. The CDC is performed on dimension table

customer. The size of data was 1GB and out of this customer

dimension contained 100k rows. Machine used was intel i5

core with 4GB RAM. Because of the limited hardware

distributed cluster was simulated using winutils[19]. Data

was experimented with initial load of 10k and 50k. Each of

the initial load were further incrementally loaded with

percentage of loads ranging from 10%, 20%, 30%, 50% and

80%. These percentage loads were performed for both data

present in combined vs separate files. An example combined

of 10% incremental load for the initial load of 10k would

require 1k new data entries. Further this 1k is split into

approximately 80% new rows and 20% modified rows.

Similarly an example of separate 10% would require two

files and data split of exactly 50% in each file. Hence the

separate files would contain 500 rows each and percentage of

newly added and modified rows could be again

approximately 80% and 20%.

5. RESULTS AND DISCUSSION

The results as shown in Fig8 and Fig9 of the two

approaches are plotted by comparing the time required to

perform CDC. In all cases it’s been observed that combined

approach is better in comparison to separate file based

approach. Also a plot of difference in time between the two

approaches for performing CDC for various loads is shown

in Fig10. It proves that as the data volumes increase and the

percentage of CDC data increases the difference increases

and hence combined approach is better off compared to

having data in separate files.

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

30

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

Fig8: Comparison of CDC for 10k initial load

Fig9: Comparison of CDC for 50k initial load

Fig10: Difference in time for various loads percentages

6. CONCLUSION AND FUTURE

ENHANCEMENT

Maintenance of data warehouse projects is a very

critical component for decision support system because

without updated data analysis could not yield the desired

results. Part of maintenance is the process to identify changes

from the source and move to the data warehouse. In this work

we have implemented a multi-stage CDC that helps in

reducing the efficiency of process to identify updated data

from the source system. The empirical study shows that when

two or more files arriving from source combined into a

staging area before actually performing the task of CDC is

more efficient compared to handling every single file

individually at a single staging area. Also because this

implementation was on spark based ETL engine there is one

more problem .i.e. it takes extra time for opening and closing

of files if the number of files are more, as compared to

opening and closing combined file once. We have not taken

into account in this work the opening and closing time in this

work but only reduced the number of comparison and

thereby increasing the efficiency. In future we plan to

implement a CDC scheme on a multi-node cluster using

cloud services like Google cloud platform or amazon s3.

Also there is a lot of scope in experimentation and

exploration of techniques to identify changed data in semi-

structured and un-structured sources. We plan to implement

and study CDC for semi-structured sources in future.

REFERENCES

[1] C.E. Offia, M. Crowe, a Theoritical Exploration of

Data Management and Integration in Organisation

Sectors, Int. J. Database Manag. Syst. 11 (2019) 37–

56. https://doi.org/10.5121/ijdms.2019.11103.

[2] J. Dean, S. Ghemawat, MapReduce: Simplified data

processing on large clusters, Commun. ACM. 51

(2008) 107–113.

https://doi.org/10.1145/1327452.1327492.

[3] X. Liu, C. Thomsen, T.B. Pedersen, Mapreduce-

based dimensional ETL made easy, Proc. VLDB

Endow. 5 (2012) 1882–1885.

https://doi.org/10.14778/2367502.2367528.

[4] R. Sherman, Change data capture, in: R. Sherman

(Ed.), Bus. Intell. Guideb., Morgan Kaufmann, 2015:

pp. 301–333.

https://doi.org/10.1145/1723028.1723064.

[5] X. Liu, C. Thomsen, T.B. Pedersen, ETLMR: A

highly scalable dimensional ETL framework based

on MapReduce, Lect. Notes Comput. Sci. (Including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics). 7790 LNCS (2013) 1–31.

https://doi.org/10.1007/978-3-642-37574-3_1.

[6] X. Liu, C. Thomsen, T.B. Pedersen, CloudETL:

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (1), pp. 25-31, FEB 2021 Int. j. inf. technol. electr. eng.

31

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 1

February 2021

Scalable dimensional ETL for hive, ACM Int. Conf.

Proceeding Ser. (2014) 195–206.

https://doi.org/10.1145/2628194.2628249.

[7] M. Bala, O. Boussaid, Z. Alimazighi, Big-ETL:

extracting-transforming-loading approach for

Big Data, Proc. Int. Conf. Parallel Distrib.

Process. Tech. Appl. (2015) 462.

[8] X. Liu, N. Iftikhar, An ETL optimization

framework using partitioning and parallelization,

Proc. ACM Symp. Appl. Comput. 13-17-Apri

(2015) 1015–1022.

https://doi.org/10.1145/2695664.2695846.

[9] M. Bala, O. Boussaid, Z. Alimazighi,

Extracting-transforming-loading modeling

approach for big data analytics, Int. J. Decis.

Support Syst. Technol. 8 (2016) 50–69.

https://doi.org/10.4018/IJDSST.2016100104.

[10] P.M. B, M. Abbasi, P. Furtado, AScale: Big/Small

Data ETL and Real-Time Data Freshness, (2016)

315–327. https://doi.org/10.1007/978-3-319-34099-

9.

[11] X. Liu, N. Iftikhar, H. Huo, P.S. Nielsen,

Optimizing ETL by a two-level data staging

method, Int. J. Data Warehous. Min. 12 (2016) 32–

50. https://doi.org/10.4018/IJDWM.2016070103.

[12] M. Barkhordari, M. Niamanesh, Chabok: a Map-

Reduce based method to solve data warehouse

problems, J. Big Data. 5 (2018).

https://doi.org/10.1186/s40537-018-0144-5.

[13] Denny, I.P.M. Atmaja, A. Saptawijaya, S. Aminah,

Implementation of change data capture in ETL

process for data warehouse using HDFS and

apache spark, Proc. - WBIS 2017 2017 Int. Work.

Big Data Inf. Secur. 2018-Janua (2018) 49–55.

https://doi.org/10.1109/IWBIS.2017.8275102.

[14] R. Michał Bodziony, Szymon, Roszyk, Wrembel, On

Evaluating Performance of Balanced Optimization of

ETL Processes for Streaming Data Sources, in:

DOLAP, 2020: pp. 2–6.

[15] Incremental Data Load in Hive, 2019.

https://www.youtube.com/watch?v=B51yDF04xLw.

[16] Talend, Change Data Capture, n.d.

https://help.talend.com/r/5csctXNxxEsUTzH9FeCm

mg/jN_3DNv5O4ShiIZtSBDMKA.

[17] Prashanth, Apache Spark Foundation Course -

Dataframe Basics, Learn. Journals. (2018).

https://www.learningjournal.guru/courses/spark/spar

k-foundation-training/spark-dataframe-basics/.

[18] Transaction Processing Council, (2020)

http://www.tpc.org/tpc_documents_current_versions/

.

http://www.tpc.org/tpc_documents_current_versions/

pdf/tpc-ds_v2.13.0.pdf.

[19] Steveloughran, Windows binaries for Hadoop

versions, (n.d.).

https://github.com/steveloughran/winutils.

AUTHOR PROFILES

Mohammed Muddasir N is

currently working as a assistant

professor in the department of

Information Science and

Engineering, Vidyavardhaka

College of Engineering, Mysuru,

India. He is having teaching

experience of 8 years and

industrial experience of 4 years.

He is currently a research scholar

with Visvesvaraya Technological

University, Belagavi, India. He has a

bachelor’s degree in computer science

and master’s degrees in network and

internet.

Raghuveer K has been at

the National Institute of

Engineering since 1994. He

has completed B.E

(Computer Science &

Engineering) from

University of Mysore in

1988, M.E from Devi Ahilya

Vishwavidyalaya, formerly

known University of Indore

in 1993 and PhD in 2008. He has worked as Head,

Department of Information Science & Engineering from

2008 to 2019. He has served as Head, Internal Quality

Assurance Cell (IQAC).Currently he is serving as Principal

of National Institute of Engineering.

