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ABSTRACT 

 
Real time analytics in the age of web2.0 comes with challenges particularly for data integration systems like Extract Transform 

Load (ETL) systems. ETL systems should adapt solutions based on distributed system and parallel processing to handle huge 

volumes of data having various formats and generated at a faster rate (big data). Spark based ETL engine has been used as an 

alternative for traditional ETL too to handle big data. Spark is used for data integration in a distributed environment where the 

data resides on cluster of computers like hadoop distributed files systems (HDFS).  This paper focuses on change data capture 

(CDC) in a files based system without the support of CDC solutions provided by relational database management systems 

(RDBMS). In an enterprise RDBMS CDC solutions based on triggers, snap shots are provided and developers have to leverage 

on these to identify and move changed data. In a big data environment custom solutions are needed because the technological 

advancements to address specific issues like slowing changing dimension (SCD), CDC are limited. This works comes up with a 

CDC solution on spark ETL engine using the concept of self-join implemented on a scala shell for a file based system. We also 

propose and show results of a multi-stage CDC to reduce the efficiency in execution of self-join operations by reducing the 

number of comparison required to identify the modified data.  
Keywords: Change data capture, Data warehouse, big data, Extract Transform Load 

 

1. INTRODUCTION 

 
Extract Transform Load (ETL) in the advent of big 

data brings in new challenges and requires novel solutions to 

address characteristics of big data such as volume, velocity 

and variety[1]. Extraction of data in transactional databases 

was driven by capabilities of the database management 

systems that would be tailored for data warehousing needs. 

Transformation was also dependent on custom codes that are 

built using structured query language (SQL) or using 

standardized data integration tools like Talend, Pentaho 

Kettle etc. Loading was with the support of data warehouse 

solutions provided by database management system vendors. 

Conventional ETL tools that were good for handling 

relational database do not suffice for handling big data and 

hence requires new solutions based on distributed file 

systems and Map-Reduce programming paradigm[2][3]. 

Focusing on data warehouse specific functionalities like 

slowly changing dimensions (SCD) and change data 

capture(CDC) requires special attention in case of big data.  

This work is about CDC in big data using multi-

stage approach. In case of structured sources transactional 

data management systems employ a push approach where in 

the changed data are extracted from the source using the tools 

and custom code for the particular data management system. 

Here the data extracted is given as a output file and it’s the 

data warehouse job to integrate this file with the existing 

data. Change data capture for unstructured sources (big data) 

is based on the pull approach that is to query the source at 

regular intervals. Various ways to pull data to identify 

changed data [4] can be listed as follows; audit columns, row 

difference comparisons, modified time column for each of 

the sources etc. Every approach has a several challenges 

depending upon the information available. Example in times 

stamp based approach an atomic unit of data needs to be 

presented with a modified time. In hash based approach 

appropriate hashing functions needs to be available for 

pulling out the changed data. In this work we focus on time 

stamp based change data capture where in the assumption is 

every row that is modified shall be updated with the latest 

modified date and time. The problem we identified is in the 

execution efficiency of time stamp based CDC. The data 

from the source needs to be compared with the data 

warehouse contents to identify and move changed contents. 

This could be achieved using a staging area where newly 

arrived data is compared using self-join concept with the 

existing data in the stage and pick the rows that were newly 

added as well as those that were recently updated and move 

them all to the data warehouse. Here the issue is every time 

the new files arrives self-join needs to be executed.  

The approach we propose is to reduce the number of 

times self-join is executed by waiting. Here we have to wait 

for two or more files to arrive and then combine their 

information into the staging area one and perform the self-

join operation with the previous data in staging area two 

hence making it multi-stage CDC. This helps in improving 

the execution time and makes the process of performing 
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CDC much faster. The results show that combined data files 

results in much better CDC timing than separate data files. 

We have implemented a spark based ETL engine where in 

data frames are used for holding the staged data. Combine 

two or more files into a single data frames before performing 

CDC. The idea of performing change data capture using self-

join requires a comparison of n rows with another n rows of 

the same relation. If the data is present in a single data frame 

the self-join is done only once and it requires for n2 

comparisons. If combined approach is not used then the 

comparison has to be done for every new file. Suppose two 

files arrive separately then each file content is self-joined 

with staging area content twice, assuming equal rows in the 

two files arrived the comparison would be 2 times n2.  If the 

number of files increase so does the number of times 

comparisons that have to be done increases. Hence we show 

that multi-stage approach to wait for many files to arrive and 

then perform self-join to extract changed data is a better 

approach.  

 

 

2. RELATED WORK 
 

ETL and big data have been the focus of research 

for many academicians in recent times. Every work focuses 

on certain issues that could address challenges of faster 

execution, modeling, scalability etc.  

A work using map reduce for handling ETL was 

done by authors of [5]. They use parallel dimensional frame 

work to address slowly changing dimensions (SCD). They 

combine offline and online dimension schema for better 

scalability. Offline dimension help to reduce direct 

interaction with the data warehouse they are stored on a 

distributed system and are partially brought into the main 

memory for a faster lookup during fact processing. Similar 

work by the same authors to address slowing changing 

dimension was called cloud based ETL[6].The novelty of 

cloud based ETL is co-locate data for a specific purpose. The 

authors of [7] have adopted hash based CDC where in two 

tuples are compared for equality of their keys and hash 

valued. If both the equations evaluate to true then the tuple in 

comparison would be rejected as it was not modified or 

added after the previous incremental load. However if the 

keys match and hash value do not match then it means the 

tuples have a different values in source and data warehouse 

and hence concluded to be modified. This modified tuples is 

the candidate for change data capture. The novelty of their 

approach is computing the hash value using cyclic 

redundancy check. 

Partitioning and parallelization of ETL was done in 

[8] where a frame work consisting of data flow designer, 

practitioner, task planner component manager and meta data 

model are used to optimize the process. Modeling ETL to 

handle volume characteristic of big data was done by authors 

of [9]. They use anticipation during early stages of ETL for 

parallelization and distribution to increase processing speed. 

Transformation part of ETL is done using two phases map 

and reduce. The work by authors of[10] is about automatic 

scalability of ETL to handle small and big data. They have 

come up with architecture for automatic scalability which 

comprises of performance monitoring sub system, 

configuration sub system, universal data warehouse manager, 

scheduler and pool of nodes that could be added for scaling 

up and removed for scaling down. Handling data that arrive 

late to populate slowing changing dimension was proposed in 

[11]. They use two levels of staging because to handle late 

arriving or early arriving data needs a platform to rest. By 

having two staging areas ETL flexibility is achieved along 

with minimal intervention of the data warehouse.  

The authors of [12] propose two phase map reduce 

to solve data warehouse problem related to big data. Joining 

dimension and facts are required to populate the data 

warehouse and hence if the data sizes are huge this is a 

performance bottle neck. Two phase map reduce to perform 

aggregations on mappers and processes intermediate results 

on reduces. Mappers and reduces are separated for facts 

known as fact mappers reducers, dimension mappers and 

reduces. CDC based on differential snap shot is implemented 

in [13]. Change data capture in big data based on snap shot 

requires to compare huge number of attributes and hence a 

time consuming process. The problem of increase in data 

volumes was handled using a distributed file system 

approach that was used to store full extracted data as silos on 

a hadoop distributed file system (HDFS). Outer join 

operations of SQL spark was used to implement CDC. 

Streamed data sources are handled using balance 

optimization techniques in [14]. Balanced optimizer 

minimizes data movement, uses optimization solutions 

available are source and destination, and maximizes parallel 

processing. 

Through the literature survey we have explored on 

various aspects of ETL that are handled for big data by 

various authors through last decade. We could only find two 

papers related to CDC [7] [13], one paper using hash based 

function to identify changed row and other uses snap shot for 

identifying changed data. In this paper we use time stamp 

based CDC and also implement a novel two stage approach 

to reduce the comparison efficiency.  

 

3. CHANGE DATA CAPTURE 

ILLUSTRATED 
 

The techniques of change data capture (CDC) 

retrieves the data from the source that which is updated 

(insert, update, delete). In the below Fig1 shown is a glimpse 

of the scenario. Source has got two files Day1 data and Day2 

data. Day1 data has 5 tuples and Day2 also has 5 tuples. 

Assuming that Day1 data is already in the data warehouse 

Day2 data needs to be combined with Day1 data. Tuples 

highlighted with red color in Day2 are those tuples that 
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match with the existing tuples in Day1 that are highlighted in 

green color. The CDC would retain the latest entries for 

similar rows i.e. in this case tuples with SSN 2 and 3. Day1 

data needs to be replaced for the tuples with SSN 2 and 3. 

Also the newly added data in Day2 needs to be present at the 

data warehouse. The implementation is achieved by 

combining the data from Day1 and Day2 into a staging area 

as a single table. Now staging area contains total of 10 tuples 

5 each from Day1 and Day2. In the staging area the table is 

made to perform a self-join on SSN. Self-join output will be 

10 tuples that match 10 SSN values each from two copies 

with 12 columns viz(SSN, Name, Age, PHNO, Sal, Modified 

data) from two copies of the table.  Next is to group the data 

for second copy on SSN and select maximum value of date. 

Finally the first copy of the table is made to filter SSN that 

match the max modified date from the second copy of the 

table. Final result as seen in the data warehouse table is 8 

rows, by eliminating repeated rows and retaining all the 

newly added rows.  

 
Fig1: Illustration of CDC 

 

The above techniques is a time stamp based 

CDC[15][16], in which it’s mandatory to have the changed 

time stamp of each row. The implementation using big data 

technologies like hadoop , spark and scala was done to 

improve on the existing technique. The code was written in 

scala and ETL pipeline was spark. The below code snippet 

assigns a sequence of structured data to a dataframe[17]. The 

dataframe name is empDF and has 10 rows i.e. 5 row each 

for Day1 and Day2.  

 

3.1 DATA FRAMES AS STAGING FOR CDC 

Data frame contents having 10 rows is shown in 

below Fig2. Output of the CDC based on time stamp for two 

days data is shown in the below Fig3. The output shows only 

8 rows out of 10 rows indicating 2 rows that were duplicates 

have been discarded based on max modified date. So the old 

5 rows and newly added 3 rows sum up to 8 rows.  
 

Fig2: Two days data combined in a single data frame 

(staging) 
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Fig3: Two days data self-join CDC 

Next Fig4 shows continued data arrival for Day3. 

Staging table already contains 10 rows from Day1 and Day2 

now after combining with Day3 there are 15 rows. After the 

self-join operation because of repetition of certain rows only 

the latest modified and inserted rows are retained as shown in 

Fig5.  Day4 data is now being integrated and CDC logic is 

performed as shown in Fig6and Fig7 respectively. As 

compared to joining two days data joining third day and 

fourth day data took a little extra time in milliseconds. So the 

results show that as the data keeps on arriving it’s placed in 

stage table and CDC is performed. The illustration was made 

using days as interval for arrival of files. In real time it could 

be possible that the files arrive at every hour or after certain 

minutes. If the CDC solution is to put the file content on to 

the staging area and perform self-joins for getting changed 

data, then we have identified a problem. 

 

3.2 PROBLEM IDENTIFICATION 

The problem is increase in the number of 

comparisons required every time CDC is computed. The 

reason of increase in number of comparison is explained as 

follows. Initially the data in the data frame is 10 rows. Later 

in the day two times updated files were received and each file 

needs to be joined with the data frame. Each updates files 

contains 5 records for illustration purpose. If the first file is 

update with initial file using a single data frame then it 

requires 15 multiplied by 15 i.e. 225 comparisons. Later the 

second file is updated with previous processed 15 records 

that requires another 20 multiplied by 20 comparisons i.e. 

400 comparisons. In total the two files are compared 

separately with the initial data requires 225 plus 400 i.e. 625 

comparisons.  The proposed method is to combine the two 

file contents before placing them into staging area. By this 

only 20 records are placed in staging area 5 records each 

from two files. This would reduce the number of comparison 

because now the staging area contain only 20 records from 

both the files and only these 20 records needs to be self-

joined to get the changed data.  Thus by this approach as 

explained in the previous case instead of comparing 15X15 

records and later again comparing 20X20 records only 

20X20 records needs to be compared.. 

 

 
Fig4: Three data files 15 rows (staging) 

 
Fig5: Three data files CDC using self-join 
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Fig6: Four data files 20 rows 

 

 
Fig7: Comparing proposed approach with previous approach 

 

3.3 PROPOSED SOLUTION 

Our claim is supported by the experimental results 

shown in Fig5 and Fig7. Three file combined in staging area 

contains 15 records as shown in Fig4 (files 3 contains 5 

records and integrating it with the staging data containing 10 

rows) and perform CDC takes 1167ms. Again after the 

arrival of file4 again containing 5 records and integrating it 

with the stating data and performing CDC takes 1226ms. The 

approach proposed is if there is a little difference in time of 

arrival of file3 and file4 the entire CDC could be done in 

1226ms instead of integrating and performing CDC on file3 

and file4 separately. But this has to be done if the interval of 

arrival of file is less than the total time taken for performing 

two separate CDC operations. If the interval of arrival is 

reduced then because of requirement of real time analytics 

separate CDC needs to be done.  

 

4. IMPLEMENTATION 
 

Approach to combine data into staging before 

performing CDC was implemented on TPC-DS [18]bench 

mark dataset. The CDC is performed on dimension table 

customer. The size of data was 1GB and out of this customer 

dimension contained 100k rows. Machine used was intel i5 

core with 4GB RAM. Because of the limited hardware 

distributed cluster was simulated using winutils[19]. Data 

was experimented with initial load of 10k and 50k. Each of 

the initial load were further incrementally loaded with 

percentage of loads ranging from 10%, 20%, 30%, 50% and 

80%. These percentage loads were performed for both data 

present in combined vs separate files. An example combined 

of 10% incremental load for the initial load of 10k would 

require 1k new data entries. Further this 1k is split into 

approximately 80% new rows and 20% modified rows. 

Similarly an example of separate 10% would require two 

files and data split of exactly 50% in each file. Hence the 

separate files would contain 500 rows each and percentage of 

newly added and modified rows could be again 

approximately 80% and 20%.  

 

5. RESULTS AND DISCUSSION 
 

The results as shown in Fig8 and Fig9 of the two 

approaches are plotted by comparing the time required to 

perform CDC. In all cases it’s been observed that combined 

approach is better in comparison to separate file based 

approach. Also a plot of difference in time between the two 

approaches for performing CDC for various loads is shown 

in Fig10. It proves that as the data volumes increase and the 

percentage of CDC data increases the difference increases 

and hence combined approach is better off compared to 

having data in separate files.  



 

 

          

 
©2012-21 International Journal of Information Technology and Electrical Engineering 

 
ITEE, 10 (1), pp. 25-31, FEB 2021                                 Int. j. inf. technol. electr. eng. 

30 
 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     

February 2021                                                                                                  

  
Fig8: Comparison of CDC for 10k initial load  

 
Fig9: Comparison of CDC for 50k initial load 

 

 
Fig10: Difference in time for various loads percentages 

 

 

 

 

6. CONCLUSION AND FUTURE 

ENHANCEMENT 
 

Maintenance of data warehouse projects is a very 

critical component for decision support system because 

without updated data analysis could not yield the desired 

results. Part of maintenance is the process to identify changes 

from the source and move to the data warehouse. In this work 

we have implemented a multi-stage CDC that helps in 

reducing the efficiency of process to identify updated data 

from the source system. The empirical study shows that when 

two or more files arriving from source combined into a 

staging area before actually performing the task of CDC is 

more efficient compared to handling every single file 

individually at a single staging area. Also because this 

implementation was on spark based ETL engine there is one 

more problem .i.e. it takes extra time for opening and closing 

of files if the number of files are more, as compared to 

opening and closing combined file once. We have not taken 

into account in this work the opening and closing time in this 

work but only reduced the number of comparison and 

thereby increasing the efficiency. In future we plan to 

implement a CDC scheme on a multi-node cluster using 

cloud services like Google cloud platform or amazon s3. 

Also there is a lot of scope in experimentation and 

exploration of techniques to identify changed data in semi-

structured and un-structured sources. We plan to implement 

and study CDC for semi-structured sources in future.   
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