
 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

32 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

Empirical Analysis of Cache-Oblivious Matrix Multiplication on Multicore 

Processor Systems 
1Riaz Ahmed and 2Lalit Sen Sharma 

1Department of Computer Sciences, Govt. Degree College Poonch, J&K, India 

2Department of Computer Sciences & IT, University of Jammu, J&K, India 

E-mail:  1riaz.mirza.11@gmail.com, 2lalitsen@yahoo.com 

 

ABSTRACT 
 

In this study the performance of cache-oblivious matrix multiplication algorithm on multicore machines has been evaluated using 

experimental method. The evaluation has been made against the naive-iterative and cache-aware variants of matrix multiplication 

algorithm. The performance bottleneck in cache-oblivious matrix multiplication was identified using experimental study and a 

conceptual framework was designed using poly-algorithmic approach for its optimization in which recursion of cache-oblivious 

matrix multiplication was stopped at optimized base case and then iterative method was applied for completion of computation. 

The optimized cache-oblivious matrix multiplication was further analysed against iterative and cache-aware variants of matrix 

multiplication algorithm with varying matrix dimensions. The experimental results showed that using poly-algorithmic approach 

has improved the performance of algorithm. The performance of cache-oblivious algorithm remained better than traditional 

iterative method of matrix multiplication and remained competitive with cache-aware matrix multiplication algorithm. The study 

indicates that cache-oblivious approach is very beneficial for present complex multicore architecture because of its simplicity, 

portability and competitive performance. 

 
Keywords: Cache-aware, cache-misses, cache-oblivious, cilkplus. multicore, matrix multiplication 

 

1.  INTRODUCTION 
 

 Multicore processor systems are now common across 

the world, even small hand held devices like mobile phones 

having quad- and octa-core processors are easily available in 

the market due to paradigm shift of almost all chip 

manufacturing companies towards producing chips containing 

multiple processors or cores [1]. The appearance of multicore 

processors has provided huge computational power which 

could only be utilized by using efficient algorithms and data 

structures. Therefore, the importance of efficient and optimized 

algorithms and their implementations has increased many folds 

in order to achieve the expected performance of multicore 

hardware by utilizing its computing resources. One of the keys 

to exploit the performance potential of multicore systems is the 

best use of cache hierarchy of multicore processors. The cache-

oblivious algorithm [2] [3]  was designed to avoid some of the 

difficulties of taking advantage of memory hierarchy of single 

core microprocessor machines for optimization of applications. 

In cache-oblivious algorithm variables are not depend upon the 

hardware parameters such as cache size, cache line length i.e. 

these variables are not required to be tuned for performance 

improvement. These algorithms are based on divide-and-

conquer strategy in which each division step creates sub-

problems of small size until it fits in some level of memory 

hierarchy where computation is performed without suffering 

cache-misses at that level and automatically adopts to all level 

of memory hierarchy. The cache-oblivious matrix 

multiplication(COMM) algorithm was originated in [4] where 

it was described in different frameworks and lateron extended 

to rectangular matrix in [2] [3] and described in cache-oblivious 

framework for machines having single core microprocessors 

and two level of cache hierarchy. In order to achieve the 

expected performance of multicore hardware the oblivious 

approach in [2] [3] need to be extended for multicore platform.  

This paper evaluates the performance of cache-oblivious 

matrix multiplication algorithm on machines having multicore 

processors. The evaluation has been made in contrast to 

traditional iterative and cache-aware variants of matrix 

multiplication algorithm. A conceptual framework for 

optimization of cache-oblivious algorithm was designed by 

using poly-algorithmic approach and implemented in which 

matrices were recursively divided upto optimized base case and 

then iterative algorithm was used for completion of 

computation. The improved variant of cache-oblivious 

algorithm was further examined by performing experimental 

study.   

The rest of the paper is organized as follows: Section 2 

briefed about the related work of earlier researchers. The 

experimental setup and methodology adapted in this study has 

been explained in section 3. Section 4 presents the results and 

analysis of our experiments and conclusion of the study has 

been drawn in section 5 along with future scope of research. 

 

 

2. RELATED WORK 

The first study on COMM (cache-oblivious matrix 

multiplication) algorithm was appeared in a landmark paper of 

Frigo et al. [2] [3] in which authors had designed and analysed 

matrix multiplication algorithm in cache oblivious settings on a 

machine having 450 MHZ (megahertz) AMD processor, 32 KB 

(kilobyte) L1 cache with 32 byte cache line size.  The study 

indicated that per-integer average time used by recursive 

mailto:lalitsen@yahoo.com


 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

33 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

algorithm was almost constant and took 50% less time to 

execute than the time taken by iterative algorithm.  

Another experimental study on recursive and iterative 

programs of matrix multiplication was performed by Yotov et 

al. [5] on three modern architectures namely IBM Power 5, Sun 

UltraSPARC-IIIi and Intel Itanium-2. The results of their study 

indicated that even highly optimized COMM algorithm 

performed poorly than cache-conscious program for the same 

problem. The authors pointed out that less performance of 

cache-oblivious algorithm was due to memory latency and due 

to the fact that recursive code might not exploited processor 

pipelines efficiently. They also studied the performance of 

algorithms by using microkernels. They found that iterative 

kernels performed better than recursive kernels. Their results 

showed that high performance codes require microkernels that 

must be optimized for L1 instruction cache, registers and 

processor pipelines.   

The authors in [6] evaluated the performance of parallel 

COMM which is based on Peano Curve [7] on shared memory 

multicore platforms uisng OpenMP concurrency platform. 

Algorithm was implemented using block recursive approach in 

which resursion was stopped on matrix blocks having size 

equivalent to the size of L1 cache of underlying processor. The 

performance was evaluated against the well established 

libraries  such as GotoBLAS and MKL [8] on two multicore 

platforms namely  Intel Xeon Server having Intel Xeon X7350 

quad-core processors and AMD Optron Server having 2 AMD 

Optron 2347 processors.  The results of their study indicated 

that matrix multiplication based on Peano Curve showed better 

scalability than by Intel’s MKL and GotoBLAS and. The results 

also pointed out that the kernel optimized according to the L1 

cache size is very beneficial for the performance improvement 

of COMM algorithm.  

A cache-aware, adaptive and efficient multithreaded 

implementation of dense matrix multiplication was appeared in 

[9]  in which authors used several techniques such as Z-Morton 

ordering layout of arrays, basic kernel operation at low-level, 

software data prefetching, task creation mechanism for 

recursion and thread pool for synchronizing shared memory 

writes. The performance of optimized task based matrix 

multiplication algorithm was compared against efficient matrix 

multiplication libraries such as GotoBLAS, AMCL (AMD Core 

Math Library) and IMKL (Intel Math Kernel Library) on three 

multicore systems namely Egypt, Barcelona, and Clovertown. 

As per the results the efficiency of their optimized task based 

matrix multiplication remained better than the well-established 

libraries and achieved 85% of peak performance on AMD and 

Intel platforms. 

 In [10] authors extended COMM algorithm based on 

Peano Curve [6]  for  modern architectures and analysed on 4 

different architectures namely SGI Altix, Intel Sandy Bridge 

Architecture, AMD Bulldozer architecture and Intel Many 

Integrated Core Architecture. Their results indicated that 

COMM using Peano Curve remained equally efficient against 

the optimized and architecture-specific libraries namely MKL 

and AMD CML. The authors pointed out that on future systems 

remarkable performance could only be achieved by using 

vector instructions because auto vectorization would become a 

crucial point.   

In another study on COMM using sequential access 

processing [11]  authors analysed the performance in terms of 

cache misses using cachegrind tool of the valgrind with 

different cache and matrix sizes. The results indicated that the 

recursive COMM has lesser number of cache miss ratios when 

compared with the naïve matrix multiplication program. 

 

3. METHODOLOGY  

The present study comprised of seven experiments 

performed on two fundamentally different machines. Initially 

five experiments were performed to determine the performance 

bottlenecks in COMM algorithm. After the analysis of first five 

experiments a conceptual framework was designed for 

improvement of COMM using poly-algorithmic approach in 

which recursion of COMM was stopped at optimized base case 

and then applied iterative algorithm to complete the 

computation. Two more experiments were performed in which 

performance of improved COMM was compared with cache-

aware and naïve-iterative variants of matrix multiplication 

algorithm. All experiments were performed on two multicore 

machines with different specifications as shown in Table 1: 

 

Table 1: Specifications of Experimental Machines 
  

 Machine-1 Machine-2 

Model 
Intel Core i-3-

240M 

Intel Core i-5-

240M 

CPU 2.50 GHz 3.40 GHz 

No. of Cores 2 4 

No. of Threads 4 8 

L1 Cache 32 KB 256 KB 

L2 Cache 256 KB 1024 KB 

L2 Cache 3072 KB 8192 KB 

Memory 4 GB 4 GB 

O.S. Linux 64-bit Linux 64-bit 

 

3.1 Concurrency Platform:  Intel-Cilk-Plus concurrency 

platform was used for implementation of all algorithms. Intel 

Cilk Plus [12] [13] is a language extension to C and C++ 

languages and was developed to ease the programming efforts 

for shared memory multiprocessor systems. The parallelism in 

the programs has been expressed using three keywords of Intel 

Cilk plus namely cilk_spawn, cilk_sync and cilk_for which 

explain the logical structure of parallel program and the runtime 

system of Intel Cilk Plus schedules the parallel work 

dynamically onto the available cores. A parallel loop has been 

expressed by cilk_for keyword which allows the iteration of the 

for loop body to run in parallel.  

3.2. Performance Metrics: The metrics of latency, 

GFlops, speedup, efficiency and cache miss-ratio were 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

34 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

evaluated using experiments. The gettimeofday command of C 

language was used to measure the execution time of algorithms. 

In scientific computation FLOPS (floating point operations) has 

been used to measure the performance of applications on 

computer and the more accurate metric used in modern 

computers is GFLOPS: 

𝐺𝐹𝑙𝑜𝑝𝑠 =
𝑛2

𝑡𝑖𝑚𝑒 ∗  22
 … … … … … … … … … … … … . (1) 

The speedup is calculated by dividing Serial Execution 

Time by Parallel Execution Time:  

𝑆𝑈 =
𝑇1

𝑇𝑛
… … … … … … … … … … … … … … … … … . (2)  

The efficiency is calculated by dividing speedup by 

number of processors:  

𝐸 =
𝑆𝑈

𝑃𝑛
… … … … … … … … … … … … . … . . … … … . (3) 

Perfsuit tool also known as the performance counter for 

Linux was used to evaluate the hardware events like cache 

misses by entering a perf stat command. The L1 cache miss 

ratio was measured as below: 

𝑚𝑖𝑠𝑠 − 𝑟𝑎𝑡𝑖𝑜 =
𝐿1−𝑑𝑐𝑎𝑐ℎ𝑒−𝑙𝑜𝑎𝑑𝑠

L1−dcache−load−misses 
… … . … . . (4)  

3.3. Data-Set used for Experimentation: The double 

precision (8 bytes), randomly generated data set has been used 

in all experiments. The random values of matrices were 

generated using srand function of C library. The matrices were 

stored in row-major order. Three types of matrix dimensions 

were used for experimentation namely; the dimensions as exact 

power of 2 (n= 8, 16, 32, 64, 128, 256, 512, 1024), matrices 

with not power of 2 but multiple of 100 (n = 100, 300, 600, 900) 

and matrix with length of matric row is multiple of cache line 

length (384, 640, 896, 1152). 

 

4. RESULTS AND ANALYSIS 

The experimental results along with discussions has been 

presented in this section. 

Experiment-1: The first experiment was performed for 

two variants of matrix multiplication viz. naïve-iterative and 

cache-oblivious (CO) on a dual-core machine with matrix 

dimensions exact power of 2. The algorithms were executed 

sequentially as well as in parallel and execution time was 

recorded as performance metric and shown in Table 2. It has 

been observed that for small matrix sizes up to 128 both 

algorithms with sequential access performed better and 

thereafter the performance of parallel algorithms remained 

better than their sequential variants. It has also been observed 

that for small matrix dimensions naïve matrix multiplication 

algorithm outperformed all implementations. For matrix size 32 

and above cache oblivious matrix multiplication outperformed 

the naïve matrix multiplication algorithm. The results were 

further analysed by calculating their means and their 

computation times as shown in Fig 1(a) and Fig 1(b) 

respectively. The graphs in Fig 1(a) and Fig 1(b) indicate that 

parallel COMM algorithm took least amount of time among all 

the algorithms whereas sequential naïve algorithm remained the 

most expensive one.  The mean results were further analyzed 

by evaluating the speedup and efficiency. The results show that 

parallel COMM and parallel naïve algorithms remained 91% 

and 59% more efficient than their sequential variants and the 

parallel COMM algorithm remained 120% more efficient when 

compared with the parallel naïve MM algorithm. 

Table 2: Execution time (in sec) of MM Algorithms with 

matrix dimensions power of 2 on a dual-core machine 

Matrix 

Size 

(n) 

Naive Cache Oblivious 

Sequential Parallel Sequential Parallel 

16 0.00016 0.00073 0.00017 0.00018 

32 0.00109 0.01038 0.00050 0.00066 

64 0.00771 0.02214 0.00279 0.00303 

128 0.02798 0.03207 0.00930 0.00519 

256 0.15906 0.11708 0.07015 0.03965 

512 0.81980 0.67428 0.57049 0.30804 

 
Fig 1(a)  

 
Fig 1(b)  

Fig 1(a) shows mean execution time, Fig 1(b) shows 

percentage of computation time, of MM Algorithms with 

matrix dimensions exact power of 2 on a dual-core machine 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

35 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

Experiment-2: The second experiment was also 

performed for both naïve and COMM algorithms on a dual-core 

machine but the input matrix dimensions were multiple of 100. 

The algorithms were executed sequentially as well as in parallel 

and execution time was recorded as performance metric as 

shown in Table 3.  

Table 3: Execution time (in seconds) of MM Algorithms with 

matrix dimensions multiple of 100 on a dual-core machine 

 

Matrix 

Size 

(n) 

Naive Cache Oblivious 

Sequential Parallel Sequential Parallel 

100 0.00544 0.00532 0.00626 0.00471 

300 0.11652 0.06705 0.12657 0.10334 

600 1.84589 1.04648 1.00553 0.76168 

900 7.76429 4.34658 3.30237 2.04493 

1200 18.68961 11.45708 8.11196 6.71168 

 
Fig 2(a) 

 
Fig 2(b) 

 
Fig. 2(a) shows mean execution time, Fig. 2(b) shows 

percentage of computation time, of MM Algorithms with 

matrix dimensions multiple of 100 on a dual-core machine 

 

The results indicate that parallel variants of both algorithms 

outperformed their sequential variants for all matrix 

dimensions. For small matrix sizes the performance of 

sequential naïve was better than sequential COMM and 

thereafter COMM remained best. The performance of parallel 

cache oblivious algorithm remained better in all cases except 

for matrix size 300 where as naïve variant performed better.  

The mean of all results has been calculated and shown in 

Fig 2(a) and the percentage of computation time is calculated 

and shown in Fig 2(b). The results in Fig.2 showed that parallel 

cache-oblivious algorithm took least amount of time among all 

the algorithms whereas sequential naïve algorithm remained the 

most expensive one. 

The mean results were further analyzed by evaluating the 

speedup and efficiency. The results showed that parallel cache-

oblivious and naïve algorithms remained 65% and 83% more 

efficient than their sequential variants respectively and the 

cache-oblivious algorithm remained 88% more efficient when 

compared with the naïve algorithm. 

Experiment-3: The third experiment was performed on a 

quad-core machine for two variants of matrix multiplication 

viz. naïve and cache oblivious. Both sequential and parallel 

variants were executed with matrix dimensions multiple of 100 

and results have been shown in Table 4. 

Table 4: Execution time (in seconds) of Matrix Multiplication 

Algorithms with matrix dimensions multiple of 100 on a quad-

core machine. 

Matrix 

Size 

(n) 

Naive Cache Oblivious 

Sequential Parallel Sequential Parallel 

100 0.004353 0.003876 0.004886 0.006785 

300 0.04625 0.02508 0.086255 0.039031 

600 0.704802 0.316927 0.690731 0.310163 

900 3.246513 1.255017 2.272097 0.779073 

1200 15.23976 3.855156 5.582139 2.422053 

It has been observed that algorithms have similar 

behavior on quad-core machine as was observed on dual-core. 

The results indicated that the parallel variants of both 

algorithms outperformed their sequential variants for all matrix 

dimensions on quad-core machine. For small matrix sequential 

naïve was better than sequential cache oblivious. Parallel cache 

oblivious algorithm remained better in all cases except for 

matrix size 100 & 300 where naïve performed better. The mean 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

36 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

of all results has been calculated and shown in Fig 3(a) and the 

percentage of computation time is calculated and shown in Fig 

3(b). The results show that parallel cache oblivious algorithm 

took least amount of time among all the algorithms whereas 

sequential naïve algorithm remained the most expensive one. 

The mean results were further analyzed by evaluating the 

speedup and efficiency. The results show that parallel cache-

oblivious and naïve algorithms remained 88% and 60% more 

efficient than their sequential variants respectively and the 

cache-oblivious algorithm remained 38% more efficient when 

compared with the naïve algorithm. 

 
Fig 3(a) 

 
Fig 3(b) 

Fig 3(a) shows mean execution time, Fig 3(b) shows 

percentage of computation time of MM Algorithms with 

matrix dimensions multiple of 100 on a quad-core machine 

Experiment-4:  The fourth experiment was performed on 

a dual-core machine by evaluating GFlops/sec. This experiment 

was performed for three variants of matrix multiplication 

namely naïve, cache oblivious (CO) and cache aware (CA) with 

matrix dimensions exact power of 2. All algorithms were 

executed both sequentially and parallel and results have been 

shown in Fig 4(a-c).  The results indicate that sequential 

variants of all algorithms outperformed their parallel 

counterparts for small data set. For matrix dimensions up to 16 

there was abrupt increase in the performance of sequential 

algorithms and then almost linear. The parallel variants 

outperformed for matrix sizes 128 and above. 

 
Fig 4(a) 

 
Fig 4(b) 

 
Fig 4(c) 

Fig 4 shows comparative Performance (in GFLOPS) of a) 

Naïve, b) Cache-Aware and c) COMM Algorithms with 

matrix dimensions power of 2 on a dual-core machine 

Experiment-5: The performance of matrix multiplication 

algorithms was further analysed on both dual-core and quad-

core machines by measuring their cache misses in fifth 

experiment. The ratios of cache misses were evaluated and 

shown in Table 5 and Table 6 respectively. It has been observed 

that for small matrix sizes sequential naïve algorithm suffered 

with small cache penalties but when the size of matrix grows it 

suffered from high cache penalty. The cache oblivious 

algorithm showed different behaviour as compared to naïve 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

37 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

algorithm. For small matrix sizes cache-oblivious matrix 

multiplication showed high ratio of cache misses whereas for 

large matrix sizes it showed lesser number of cache misses. 

Less cache-miss ratio of cache-oblivious algorithm for large 

matrix dimensions indicate that cache oblivious algorithm used 

cache memory efficiently.   

Further the impact of cache misses on the performance 

of algorithm has been evaluated by calculating the correlation 

between cache misses and performance of an algorithm. The 

calculated value of r (correlation coefficient) was 0.63, which 

shows strong positive correlation between algorithmic 

execution time and cache-miss ratio. It has been observed that 

the cache miss ratio of algorithms was directly proportional to 

their execution time as the performance of algorithms increased 

with the decrease of cache misses. So, the rate of cache misses 

has tremendous impact on the performance of algorithm with 

sufficiently large matrix sizes. The performance of cache 

oblivious algorithm remained better for large matrix sizes 

because of lesser number of cache misses. 

Table 5: Cache Miss Ratio of Matrix Multiplication 

Algorithms with matrix dimensions multiple of 100 on a quad-

core machine 

Matrix 

size 

On dual-core machine 

Naïve Cache Oblivious 

Sequential Parallel Sequential Parallel 

100 0.44 1.1 0.67 1.13 

300 1.7 0.36 1.66 0.93 

600 10.01 0.37 1.49 0.77 

900 10.58 0.26 1.81 0.52 

Table 6: Cache Miss Ratio of Matrix Multiplication 

Algorithms with matrix dimensions multiple of 100 on a quad-

core machine 

Matrix 

size 

On quad-core machine 

Naïve Cache Oblivious 

Sequential Parallel Sequential Parallel 

100 3.83 2.15 1.38 2.08 

300 1.32 0.38 2.77 1.73 

600 8.55 0.34 0.86 0.84 

900 9.65 0.28 0.56 0.56 

Inferences (Experiment 1 to 5): The following observations 

has been drawn from above five experiments:  

 The results indicated that the COMM faced lesser number 

of cache penalties for large matrix sizes and thus remained 

better than naïve iterative matrix multiplication algorithm. 

The results showed that the cache penalties had significant 

impact on the performance of algorithms for large matrix 

sizes. For small matrix sizes the difference in cache miss 

ratio of cache-oblivious matrix multiplication and naïve 

iterative matrix multiplication was very small which 

indicated that cache penalties have negligible impact on the 

performance of algorithms for small matrix sizes. 

Therefore it was observed that using cache-oblivious 

approach for multiplication of large matrix sizes could be 

advantageous. 

 

 It has been seen in the results that the performance of 

cache-oblivious matrix multiplication did not scale to the 

performance of naïve-iterative matrix multiplication for 

small matrix sizes. The less performance of COMM was 

due to overhead caused by thread management and 

overhead due to excessive stack operations caused by large 

number of recursive calls made by COMM algorithm. 

Therefore, using iterative approach for multiplication of 

small matrix sizes could be more beneficial. 

 

 It has also seen that the sequential algorithms for naïve 

iterative, cache-aware and cache-oblivious matrix 

multiplication outperformed their parallel variants for 

small matrix sizes. The less performance of parallel 

variants was due to the overhead caused by thread 

management. Therefore, using sequential algorithms for 

small matrix sizes could be more advantageous.  

The careful analysis of above inferences indicated that 

there was no single solution for designing optimized algorithm 

for all matrix dimensions and on different platforms. That 

reason compelled for adapting a poly- algorithmic approach for 

implementation of cache-oblivious matrix multiplication so that 

it could performed well for all matrix sizes and on different 

machines. In that approach the recursion of COMM algorithm 

was stopped at base case of 16 and then naïve-iterative routine 

was used to complete the matrix multiplication so that the issues 

of overhead caused by thread management and the overhead 

due to excessive stack operations caused by large number of 

recursive calls made by cache-oblivious matrix multiplication 

algorithm could be addressed. The performance of improved 

variant of COMM was further analysed against naïve and 

cache-aware variants on both the experimental machines and 

results has been shown below in experiment 6 and 7. 

Experiment-6: Two sub-set of experiments were 

performed for naïve, cache-oblivious and cache-aware matrix 

multiplication (CAMM) on a dual-core machine. First set of 

experiments was performed with matrices having row length 

exact power of 2 and results has been shown in Fig 5(a & b). 

The second set of experiments was performed with matrices 

having row length multiple of cache line length and results has 

been shown in Fig 6(a & b). 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

38 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

 
Fig 5(a) 

 
Fig 5(b) 

Fig 5 (a & b): Comparative Performance (in GFLOPS) of 

Naïve, Cache-Aware and Cache-Oblivious Matrix 

Multiplication Algorithms with matrix having row length 

power of 2 on a dual-core machine 

 
Fig 6(a) 

 
Fig 6(b) 

Fig 6(a & b): Comparative Performance (in GFLOPS) of 

Naïve, Cache-Aware and COMM Algorithms with matrix 

having row length multiple of cache line length on a dual-core 

machine 

 
Fig 7(a) 

 
Fig 7(b) 

Fig 7(a & b): Comparative Performance (in GFLOPS) of 

Naïve, Cache-Aware and Cache-Oblivious Matrix 

Multiplication Algorithms with matrix having row length 

power of 2 on a quad-core machine 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

39 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

Experiment-7: Two sub-set of experiments were 

performed for naïve, cache-aware and cache-oblivious matrix 

multiplication on a quad-core machine. First set of experiments 

was performed with matrices having row length exact power of 

2 and results has been shown in Fig 7(a & b). The second set of 

experiments was performed with matrices having row length 

multiple of cache line length and results has been shown in Fig 

8(a & b). 

 

 
Fig 8(a) 

 
Fig 8(b) 

Fig 8(a & b): Comparative Performance (in GFLOPS) of 

Naïve, Cache-Aware and Cache-Oblivious Matrix 

Multiplication Algorithms with matrix having row length 

multiple of cache line length on a quad-core machine 

Observations (Experiment 6 & 7):   

 It has been observed that performance of cache-aware 

matrix multiplication remained best on both the 

experimental machines.  

 The cache-oblivious matrix multiplication performed 

better than naïve algorithm and remained at top two best 

performing algorithms.  

 Although using poly-algorithmic approach improved the 

performance of COMM but it did not performed better than 

the cache aware.   

 The mean results showed that cache-oblivious algorithm 

remained 23% more efficient than naïve algorithm but 

remained 38% less efficient when compared with cache 

aware algorithm on dual-core machine. 

 On a quad-core machine cache-oblivious algorithm 

remained 49% more efficient than naïve algorithm but 

remained 45% less efficient when compared with cache 

aware algorithm. 

 

5. CONCLUSION 

In the present research work we have evaluated the 

performance of cache-oblivious matrix multiplication on 

multicore platforms. Initially, performance bottleneck in cache-

oblivious matrix multiplication was identified using 

experimental study and then a conceptual framework was 

designed for its optimization using poly-algorithmic approach. 

In that approach recursive divide-and-conquer algorithm was 

used as overall approach and iterative algorithm at low level as 

microkernel.  

The optimized cache-oblivious matrix multiplication was 

further analysed against iterative and cache-aware variants of 

matrix multiplication with varying matrix dimensions. The 

experimental results showed that using poly-algorithmic 

approach has improved the performance of algorithm. The 

performance of cache-oblivious algorithm remained better than 

traditional iterative method of matrix multiplication and 

remained competitive with cache-aware matrix multiplication 

algorithm.  

The study indicates that cache-oblivious approach is very 

beneficial for present complex multicore architecture because 

of its simplicity, portability and competitive performance.   

FUTURE SCOPE: The present research work can be extended 

by performing analysis on many core platforms. Further the 

microkernel used at low level could be optimized using vector 

instructions or transposition which can improve the 

performance of cache-oblivious matrix multiplication. 

 

 

REFERENCES 
 

 

[1] G. Blelloch, R. A. Chowdhury, P. Gibbons, V. 

Ramachandran, S. Chen and M. Kozuch, “Provably good 

multicore cache performance for divide-and-conquer 

algorithms,” in Proceedings of nineteenth annual ACM 

symposium on Discrete algorithms, San Francisco, 

California, 2008. 



 

 

          

 
 

©2012-21 International Journal of Information Technology and Electrical Engineering 

ITEE, 10 (1), pp. 32-40, FEB 2021                                   Int. j. inf. technol. electr. eng. 

40 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 10, Issue 1     
February 2021                                                                                                  

[2] M. Frigo, C. E. Leiserson, H. Prokop and S. 

Ramachandran, “Cache-oblivious algorithms,” in 40th 

Annual Symposium on Foundations of Computer Science 

, 1999. 

[3] M. Frigo, M. Leiserson, H. Prokop and S. 

Ramachandran, “Cache-Oblivious Algorithms,” ACM 

Transactions on Algorithms, vol. 8, no. 1, pp. 1-22, 

January 2012. 

[4] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson 

and K. H. Randall, “An Analysis of Dag-Consistent 

Distributed Shared-Memory Algorithms,” in Procedings 

of Eighth Annual ACM Symposium on Parallel 

Algorithms and Architectures (SPAA 2004), Padus, Italy, 

1996. 

[5] K. Yotov, T. Roeder, K. Pingali, J. Gunnels and F. 

Gustavson, “An experimental comparison of cache-

oblivious and cache-conscious programs,” in 

Proceedings if nineteenth annual ACM symposium on 

Parallel Architecture, San Diego, Calofornia, USA: 

ACM New York, NY, USA, 2007. 

[6] A. Heinecke and M. Bader, “Parallel matrix 

multiplication based on space-fitting curves on shared 

memory multicore platform,” in Proceedings of the 2008 

workshop on Memory access on furure processors: a 

solved problem ?, Ischia, Italy, 2008. 

[7] M. Bader and C. Zenger, “Cache oblivious matrix 

multiplication using an element ordering based on a 

Peano Curve,” Linear Algebra and its Applications, vol. 

417, no. 2-3, pp. 301-313, 2006. 

[8] Intel Corporation, 2007. [Online]. Available: 

http://intel.com/cd/software/products/asmo-

na/eng/perflib/mkl/. [Accessed 5 June 2017]. 

[9] G. Runger and M. Schwind, “Fast recursive matrix 

multiplication for multi-core architectures,” Procedia 

Computer Science: International Conference on 

Computational Science, ICCS 2010, vol. 1, no. 1, p. 67–

76, 2010. 

[10] A. Heinecke and C. Trinitis, “Cache-oblivious matrix 

algorithms in the age of multi- and many-cores,” 

Concurrency and Computation: Practice and 

Experience, vol. 27, no. 9, 20 December 2012. 

[11] C. S. Kumar and B. S. Pattnaik, “Miss rate analysis of 

cache oblivious matrix multiplication using sequential 

access recursive algorithm and normal multiplication 

algorithm,” in 2013 International Conference on 

Emerging Trends in Communication, Control, Signal 

Processing and Computing Applications, Bangalore, 

India, 2013. 

[12] “cilk-plus-tutorial,” [Online]. [Accessed 05 January 

2016]. 

[13] Intel Corporation, “intel Cilkplus Tutorial”. 

 

 

AUTHOR PROFILES 

 

Riaz Ahmed received the Master of Computer Applications 

from Indira Gandhi National Open University, New Delhi in 

2003. He is a research student of University of Jammu. 

Currently, he is an Assistant Professor (selection grade) at Govt. 

Degree College Poonch, J&K, India. 

 

Lalit Sen Sharma MCA, M. Sc. (Mathematics), B,Sc.   Ph. D. 

(Computer Science) is a professor at University of Jammu. 

 

 


