

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

9

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

A Complete Implementation of Driver Monitoring System using

Artificial Intelligence
1T. Prabhavathy and 2S. Krithiga

1PG Student of Applied Electronics, Department of ECE, TPGIT, Vellore, Tamil Nadu, India.

2Assistant Professor, Department of ECE, TPGIT, Vellore, Tamil Nadu, India.

E-mail: 1prabhatamilvanan@gmail.com, 2krithiga.sri@gmail.com

ABSTRACT

In recent days the technological trends in the development of AI and ML paved the way to a driver monitoring system. For the

past few years, many algorithms and models are proposed for driver drowsiness detection. The behavior-based method is used to

determine the behavioral pattern of eye movement based on AI and deep learning. The Haar Cascade classifier and Viola-Jones

facial landmark detection are used to detect faces and to extract the Region Of Interest (ROI). The Eye Aspect Ratio (EAR) is

used to detect fatigue based upon the relation between the width and height of the eye. Due to the increase in traffic accidents, a

proper technique to detect drowsiness is required. Microsleeps are of short duration where the driver has his eyes closed and

cannot perceive or react which is a major reason for road accidents. With the development of deep learning technologies, the

possibility of detecting driver drowsiness without human intervention can be greatly improved. The high accuracy and feasible

results can be obtained with proper construction and optimization of the model. The model has been built to analyze driver

behavior especially the ratio of eye-opening for the detection of drowsiness. To achieve a simple model with less computation

and more accurate results the CNN model has been built trained and optimized. The trained CNN model has been deployed in

both Windows OS as well as Android OS.

Keywords: Driver Monitoring System (DMS), Convolution Neural Network (CNN), Machine Learning (ML), Eye Aspect Ratio (EAR), Region

Of Interest (ROI), Hyperparameter Tuning, Windows OS, Android OS

1. INTRODUCTION

The global increase in road accidents reports that 1 in 4

accidents are caused by drowsy driving and 1 in 25 adult

drivers report that they have fallen asleep at the wheel in the

past 30 days [1]. Driver drowsiness detection system has more

potential to prevent sleep-induced road accidents. Researchers

have proposed a wide variety of drowsiness detection methods

through various kinds of data sources, which can be

categorized into physiological methods, vehicle-based

measures, subjective measures, and behavior-based methods

[2]. The physiological drowsiness detection method requires

wearable devices and are bulky. The vehicle behavior based

method depends on the capability of the driver to concentrate

on the vehicle.

The main drawback of vehicle behavior based method is

detection of post-drowsiness and variation based on road

geometry. In a subjective measure system, the drivers alert is

estimated by the level of sleepiness using a sleepiness scale.

The main drawback is the infeasibility of implementation in

real-world driving conditions. This paper overcomes the above

drawback because it deals with behavior-based drowsiness

detection. Here, the eye is considered an important parameter

for pre-drowsiness detection. Since the convolution neural

network successfully captures the spatial and temporal

dependencies in an image with the help of relevant filters, a

CNN-based model has been built, trained, optimized, and

finally deployed in Windows OS and Android OS. This

system provides a cost-effective solution, it doesn’t require

any additional hardware devices except the mobile phone.

Nowadays, mobile has become one of the common thing

among everyone, on which the app could be installed and

ready for use.

The rest of the paper is structured as follows: Section2

presents related work carried out by researchers, Section3

presents the construction of the training model, Section4

presents hyperparameter optimization, Section5 presents

training performance acceleration, Section6 presents testing

the proposed model with .csv images, Section7 presents model

testing and analysis with images, Section8 presents model

deployment on Windows OS, Section9 presents model

deployment on Android OS, Section10 presents final results,

Section11 presents the future scope and finally concludes with

references.

2. RELATED WORK

 Many researchers, scholars, and crew members of the

corporate world are still working in this sector using various

image processing, machine learning, and artificial intelligence.

 Jabbar et al. [3] has proposed a system that focuses on the

detection of microsleep and drowsiness using neural network

methodologies. The author obtains the video dataset from

NHTU and performs data preprocessing, data augmentation,

and feature extraction from those images. It is trained using

the D2CNN-FLD model and then implemented using android

architecture. The system detects facial landmarks from

captured images on a mobile device and passes them to a

mailto:krithiga.sri@gmail.com

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

10

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

CNN-based trained Deep Learning model for drowsy driving

detection. This model has 83.33% of accuracy.

 Vasudevan et al. [4] describe that it is essential to

monitor the EAR (Eye Aspect Ratio), steering angle, and

acceleration pattern. The author uses OBD (On-Board

Diagnostics), machine learning, and image processing for

detection of deviation and alerts the driver. The EAR is

calculated with the help of six coordinates. When the distance

between the opposite points decreases, it detects drowsiness.

When the steering angle remains constant for a particular

threshold period, it detects the deviation. The author uses the

Intel UP2 AI vision board for processing real-time algorithms,

Intel UP2 machine vision USB camera for acquiring high-

resolution images, and On-Board Diagnostics (OBD) for

retrieving data like steering angle. This system requires

Machine learning at higher scales and an android application

to report feedback.

 Han Wei et al. [2] discuss the importance of extracting

eye features for drowsiness detection and also describes

extracting eye features from low resolution or degraded

images. Driver drowsiness detection is based on eyelid

movement information. Pre-processing of the image is

achieved by SSQ (single scale self quotient image) technique.

For eye openness recognition, Orthogonal locality preserving

projections (OLPP) and an Extreme learning machine (ELM)

are used. Viola-jones framework is used for face and eye

detection and proposed a novel method of unsupervised

learning. However, the drowsiness detection performance of

this method is affected by the limited amount of data.

 Chirra et al. [5] use a viola-jones face detection algorithm

to detect the face images and it is given as input to viola-jones

eye detection algorithm. Once the face is detected, the viola-

jones eye algorithm is used to extract the eye region from the

facial images and given as input to the CNN. CNN with four

convolution layers is used to extract the deep features and

those features are passed a fully connected layer. The Soft-

max layer in CNN classifies the images into sleepy or non-

sleepy images. First, the experiment is performed on the

collected dataset, and second, the experiment is performed on

video. This proposed system achieves an accuracy of about

96%

 Ignatov et al. [6] discusses about deep learning

frameworks in the android ecosystem. The TensorFlow

mobile, TensorFlow lite, Caffe, and caffe2 are the main deep

learning frameworks. In TensorFlow mobile, the

TensorFlow’s programming model is described as a directed

graph and Once the model has been trained, it can be

transported as a .pb graph. In TensorFlow lite, the pre-trained

model is converted into .tflite. The Caffe and Caffe2 are deep

learning frameworks made with expression, speed, and

modularity in mind. According to the Caffe2 Github

repository, the speed of the mobile library is generally

comparable to TensorFlow lite and claims up to higher speed

when using the OpenGL backend for GPU computations.

 Nirmal Kumar et al. [7] proposes a real-time IR camera-

based driver monitoring system. They have collected data

from people under different lighting conditions and optimized

the model to run on an embedded platform. The technique to

reduce the complexity is replacing the convolution layer with

a depthwise convolution layer and reducing the number of

weights. They have used TensorFlow for training because of

its good support for distributed computing, graph visualization

tools, faster compilation time than other libraries, and provides

both C++ and Python APIs. It also supports an optimized,

lightweight inference library (Tflite) which is best suited for

embedded platforms.

3. PROPOSED CONSTRUCTION OF

TRAINING MODEL

Tensor Flow has made the implementation of machine-

learning deep-learning models easier. It is an open-source

library developed by Google for deep learning applications.

The Google Colab is a free cloud service and it also supports

free GPU, improves the Python programming language coding

skills, and develops deep learning applications using some

libraries. To investigate the performance of eye closeness

detection in different conditions, a dataset for eye closeness

detection in the Wild CEW [Closed Eyes in the wild] is used.

In particular, this dataset contains 2874 subjects, consists of

both eyes closed and open images which are collected from

the Labeled Face in the Wild (LFW) database [8]. Figure 1

represents the CNN training with the processed dataset.

Database fields have been converted into a format that

contains a single line where a comma separates each database

record. The .csv is similar to plain text files, can be shared

easily and it reduces time consumption and storage capacity.

Figure 1: CNN Training with Processed Dataset

 The construction of CNN [9] [10] includes exporting the

dataset to CNN, preprocessing the dataset, and defining proper

layers, neurons, and activation functions. A proper path must

be established for exporting the .csv file. It can be read in

dictionary format and the list has been created with every row

of the file. Two NumPy arrays are created to store the image

and tag of the image, to assert to the previous array values.

Then the two arrays are shuffled and returned. A proper layer

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

11

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

has been defined that is the number of convolution layers,

neurons, and activation functions. Initially, some default

values are assigned.

Figure 2: Plot between epoch and training loss/accuracy

for Epoch = 5

 CNN model has been trained with appropriate optimizer

and loss function. Training accuracy and training loss has been

plotted. Binary cross-entropy loss function has been used in an

application for binary class problem open/closed eye. Random

CNN neural structure has been called and training has been

started to observe the impact on accuracy and loss. Initially,

the epoch has been set to 5, training loss and accuracy are

observed to be 0.83 and 0.35 as shown in Figure 2. And then

epoch value has been set to 10, training loss and accuracy at

the first iteration are observed to be 0.88 and 0.38 as shown in

Figure 3. Multiple iterations for train runs have been done to

observe a gradual increase in training loss and accuracy.

Figure 3: Plot between epoch and training loss/accuracy

for Epoch = 10

4. HYPERPARAMETER TUNING

 The hyperparameter is a parameter from a prior

distribution as it is used to capture prior beliefs before data is

observed [11]. For any machine learning, these parameters

should be initialized before training a model. The model

hyperparameters are used to govern the entire training process.

Choosing the appropriate parameters plays a vital role in the

success of our neural network architecture.

4.1 Optimization Of Learning Rate (LR)

 Case 1 - On decreasing the learning rate below 0.001, the

training loss increases, and accuracy decreases. It seems it

slightly suffers from underfitting and thus the model may miss

some important patterns in data. Figure 4 represents the

impact of training loss on varying the learning rate. When the

learning rate is set to 0.001, the training loss is 0.0615. On

decreasing the learning rate the training loss increases, for a

minimal learning rate of 0.00001, the training loss is very high

of about 0.4364. Figure 5 represents the impact on accuracy

on varying the learning rate. When the learning rate is set to

0.001, the accuracy is 0.9795. On decreasing the learning rate

the accuracy decreases, for a minimal learning rate of 0.00001,

the accuracy is very low at about 0.8372.

 Case 2 - On increasing the learning rate above 0.001, the

training loss increases, and accuracy decreases. It seems it

slightly suffers from overfitting and thus there may be some

collisions. Figure 6 represents the impact of training loss on

varying the learning rate. When the learning rate is set to

0.001, the training loss is 0.0615. On increasing the learning

rate the training loss increases, for maximal learning rate of

0.9, the training loss is very high of about 0.8686. Figure 7

represents the impact on accuracy on varying the learning rate.

When the learning rate is set to 0.001, the accuracy is 0.9795.

On increasing the learning rate the accuracy decreases, for

maximal learning rate of 0.9, the accuracy is very low of about

0.5129. Thus, the optimized learning rate is 0.001, identified

on the basis of learning rate impact on training loss and

accuracy.

 Figure 4: Graph between LR vs. ACCURACY for LR

 below 0.001

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

12

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Figure 5: Graph between LR vs. TRAINING LOSS for

 LR below 0.001

 Figure 6: Graph between LR vs. ACCURACY for LR

 above 0.001

 Figure 7: Graph between LR vs. TRAINING LOSS for

 LR above 0.001

4.2 Epoch Optimization

 An epoch represents the number of cycles, the dataset is

passed forward and backward through the neural network. As

the number of epochs increases or decreases, more or less the

weight changes in the neural network and the curve goes from

underfitting to optimal to overfitting curve. The dataset of

2874 is divided into a batch size of 32 then it will take 89 to

90 iterations for one epoch. If the epoch is set to 5, then it

starts from epoch1 to epoch5. Below are the graph plotted

epochs versus loss and epochs versus accuracy. On changing

the number of epochs, optimized epoch number is found based

upon training loss and accuracy.

 When epoch is set to 5, it slightly suffers from under fitting

as shown in Figure 8. When Epoch is set to 8, loss slightly

decreases as shown in Figure 9. When Epoch is set to 10, loss

decreases, and accuracy increases. The plot seems to be the

optimal one as shown in Figure 10. When Epoch is set to 12,

loss increases and accuracy decreases when compared to the

previous one as shown in Figure 11. When Epoch is set to 15,

loss decreases but slightly suffers from overfitting. Thus, the

optimum epoch number is 10, identified on the basis of epoch

impact on training loss and accuracy.

 Figure 8: Effect of setting Epoch to the value 5

 Figure 9: Effect of setting Epoch to the value 8

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

13

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Figure 10: Effect of setting Epoch to the value 10

 Figure 11: Effect of setting Epoch to the value 12

 Figure 12: Effect of setting Epoch to the value 15

4.3 Selection Of Optimizer

 The optimizers are used to update the weight parameters in

order to reduce the loss function. Stochastic Gradient Descent

(SGD) divides N samples into equal-sized batches, update

weights once per batch and one epoch completes when all

samples are used once. SGD is much faster than the other

optimizers but results are a little far from optimum. The effect

of SGD on loss and accuracy is shown in Figure 13. Adagrad

really works well for sparse datasets. It produces better results

compared to SGD as shown in Figure 14 but they are

computationally extensive. Adam was slightly faster than

Adagrad and produces less training loss compared to other

methods as shown in Figure 15. Thus, the Adam optimization

function provides a better trade-off between more computation

power and more optimum results.

 Figure 13: Effect of SGD Optimizer

 Figure 14: Effect of Adagrad Optimizer

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

14

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Figure 15: Effect of Adam Optimizer

4.4 Optimization Of Neurons

 The impact of neuron/node count in convolution layers on

accuracy and loss has been analyzed to determine the

optimum neuron count for the CNN model as shown in Table

1. Based upon the observed accuracy and losses, the number

of neurons in the respective convolution layer as follows,

 Convolution layer 1 (20 min – 40 max)

 Convolution layer 2 (40 min – 80 max)

 Convolution layer 3 (80 min – 160 max)

 Table 1: Optimizing the Neurons

4.5 Dropout Rate Optimization

 Dropout is dropping out units in a neural network. Dropout

is a technique used to prevent overfitting and co-adaptations

of neurons by setting the output of any neuron to zero with

some probability. Optimizing the dropout rate is shown in

Table 2. Thus, increasing the dropout beyond 0.10 results in a

decrease in accuracy, and decreasing the dropout below 0.10

results in saturation of accuracy. Hence, the optimum dropout

rate is 0.10 for hidden and visible units.

4.6 Batch Size Optimization

 Batch size is the number of training examples going to be

used in one iteration. The size of the update is dependent on

the particular samples that are drawn from the dataset. The

larger batch sizes can improve per image processing speed but

it may lead to lower asymptotic accuracy. Smaller batch sizes

are easier to fit one batch worth of training data in memory but

it may be slightly noisy. Thus, the optimum batch size is

required. Thus, the optimum batch size is 32 from Table 3.

Table 2: Optimizing the Dropout Rate

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

15

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Table 3: Optimizing the Batch Size

4.7 Selection Of Activation Function

 Activation functions are non-linear function. It is used to

model the input-output relationship using very complex

functions. These functions have a major effect on the neural

network’s ability to converge and the convergence speed.

 Figure 16: Effect of Softmax Function

 Softmax function normalizes the outputs for each class

between 0 and 1. The effect of the Softmax Function is shown

in Figure 16. Tanh function makes it easier to model inputs

that have strongly negative, neutral, and strongly positive

values. The effect of the Tanh Function is shown in Figure 17.

The effect of the Sigmoid function provides a smooth

gradient, the output values bound between 0 and 1. The effect

of the Sigmoid Function is shown in Figure 18. ReLU has a

derivative function and allows for backpropagation. The effect

of the ReLU Function is shown in Figure 19. Thus, the ReLU

action function is used for the input and hidden layers. The

output layer consists of a sigmoid function to predict the

probability that exists between the range 0 and 1.

 Figure 17: Effect of Tanh Function

 Figure 18: Effect of Sigmoid Function

 Figure 19: Effect of ReLU Function

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

16

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

5. TRAINING PERFORMANCE

ACCELERATION

 There are three types of runtime provided by Colab. They

are CPU, GPU, and TPU. The CPU provides fewer cores, low

latency but good for serial processing. Figure 20 represents the

effect on performance when connecting the CPU. On

connecting to GPU, tensor core accelerates large matrix

operation. Perform mixed-precision matrix multiplies and

accumulates calculations in a single operation. Accelerates

traditional AI tasks due to parallel processing. Figure 21

represents the effect on performance when connecting to GPU.

TPU consumes more training time when compared to GPU.

But TPU is good for bulky datasets and greater batch size.

Figure 22 represents the effect on performance when

connecting to TPU.

 Figure 20: Connecting to CPU

 Figure 21: Connecting to GPU

 Figure 22: Connecting to TPU

6. EVALUATION WITH .CSV IMAGES

 The model is evaluated with a test dataset, which consists

of 100 eye images in a .csv file. The first step in designing the

evaluation model is to load the model, which is needed to be

evaluated. Second, resize the image if needed. On giving a

.csv eye image to the newly optimized model as shown in

Figure 23, the model predicts whether the eyes are closed or

open accurately. The predicted results are shown in Figure 24

and Figure 25.

 Figure 23: Optimized Model

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

17

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Figure 24: Predicting the Open Eye Image

 Figure 25: Predicting the Closed Eye Image

7. TESTING MODEL WITH EYE IMAGES

 The trained TensorFlow model for open eye and closed eye

detection has been tested with different images. For this

testing, the images from various lighting conditions and

different views are given. This analysis is required to check

the detection ability of the trained model under different

conditions. For testing the model various open eye and closed

eye images with different views and illumination have been

downloaded. The new Colab notebook has been opened and

mounted with the drive for accessing the images from the

drive. Once the image has been accessed, its corresponding

parameters link height, width and mode have been obtained.

The image is made with indivisible segments called pixels and

every pixel has its strength called pixel intensity. The RGB

image is a combination of three and produces all possible

color pallets. With color images, a huge volume of data needs

to be worked out and becomes computationally expensive. But

the greyscale image consists of only one channel and thus the

image is converted into a greyscale image. The method

flatten() is used to convert the array into a one-dimensional

array and the values are taken row-wise.

 The image is read as NumPy array and the image

processing operations can be performed without the use of

OpenCV libraries. The NumPy is an alternative for lists in

python because it holds less memory, faster processing, and

more convenient to use. Arrays in Numpy are more compact

when compared to lists and the data specification which leads

to code optimization. The image is converted into greyscale

with the convert(‘L’) and then passes it to np.array(), it returns

the 2-dimensional (ndarray) whose shape is (row(height),

col(width)). The ndarray has been obtained from the PIL

image with np. asarray. The np. asarray returns a non –

rewritable ndarray. The element in the ndarray is the object of

a datatype object (called datatype). The datatype of the read

ndarray is an 8-bit unsigned integer and processed as a

floating-point number with the help of astype(). The

.reshape(x,y) converts an array into a multi-dimensional array.

Figure 26 represents the flow of the process involved in this

testing and analysis. For this analysis, 8 open eye images and

8 closed eye images have been given to the model for testing.

These 16 images are the input images. The preprocessing

represents the conversion of images into greyscale and

flattening it. The CNN model represents the model that has

been built, trained, and optimized. This CNN model consists

of three convolution layers and three dense layers. It also

includes adam optimizer and binary cross-entropy loss

function. The output represents the capability of the CNN

model to predict whether the image is a closed eye or an open

eye image.

 Figure 26: Process involved in testing the model with eye

 The confusion matrix [12] is the table used to describe

the performance of the classifier or classification model on a

set of test data for which the true values are known. It

represents the way in which the classification model gets

confused in making predictions. Thus, a confusion matrix is a

summary of prediction results on a classification problem. The

confusion matrix includes true positive (TP), true negative

(TN), false positive (FP), and false-negative (FN).

 The predictions are the numbers that are organized into a

table or matrix. The “expected down the side” represents each

row of the matrix corresponds to a predicted class. The

“predicted across the top” represents each column of the

matrix corresponds to an actual class. The total number of

correct predictions of a class moves into the expected row for

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

18

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

that class value and the prediction column for that class value.

Similarly, the total number of incorrect predictions for the

class moves into the expected row for that class value and the

predicted column for that class value. The two-class problem

is a special problem used to discriminate between observations

with a specific outcome from normal observations. The “true

positive” represents correctly predicted event values, the “true

negative” represents correctly predicted no-event values, the

“false positive” represents incorrectly predicted event values,

and “false negative” represents incorrectly predicted no-event

values.

 Table 4: Prediction Truth Table

 The input image includes eight open-eye images and 8

closed-eye images. The open eye images are considered as

true positive and closed eye images are considered as true

negative, if it is predicted correctly. If an open eye image is

wrongly predicted as closed-eye by the model, it is a type I

error and called a false negative. If a closed eye image is

wrongly predicted as the open eye by the model, it is a type II

error and called a false positive.

Figure 27: Confusion Matrix for Open eye and Closed eye

 The trained and optimized CNN model predicts all the

eight closed-eye images correctly but it fails to predict one

dark open-eye image. The number of images that the model

fails to predict the open-eye image is called a false negative.

The number of images that the model fails to predict the

closed eye images is called a false positive. The trained and

optimized CNN model doesn’t wrongly predict the closed eye

image, thus there is no false positive. In order to determine the

prediction capability of the model, accuracy has been

calculated.

Thus, an accuracy of 93.75% is achieved from the trained and

optimized model.

8. MODEL DEPLOYMENT ON WINDOWS

OS

 Many ML developers suggest that google colab is the

smartest option for training and testing the TensorFlow model.

But working with OpenCV in GoogleColab is difficult

because it is very difficult to access the local hardware like

webcam and the delay between each frame is very high. Thus,

many ML developers suggest offline tools like an anaconda to

overcome these drawbacks.

 OpenCV is a library that carries out image processing using

languages like python. OpenCV Library has been utilized to

make Real-Time Face Detection using a webcam as a primary

camera. The dlib is an open-source library for implementing

various machine learning algorithms. The haar cascade frontal

face detector is used for face detection, where the cascade

function is already trained with lots of positive and negative

images. For detecting key facial features, facial landmark

detectors are used. The process flow involved in model

deployment on windows os is shown in Figure 28.

Figure 28: Process Flow involved in Model Deployment

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

19

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 From the landmarks detected in the image, the eye aspect

ratio (EAR) [13] is used in the estimation of the eye-opening

state. For every video frame, eye landmarks are detected. The

ratio between the height and width of the eye has been

computed. The P1, P2,…, P6 are the landmarks of the eye as

shown in Figure 29 and Figure 30.

 EAR =
||P2−P6||+||P3−P5||

2||P1−P4||

 Where,

 P1-P4 Horizontal distance

 P2-P6 Vertical distance1

 P3-P5 Vertical distance2

 These landmarks [14] are used to compute the ratio of

vertical and horizontal distances. The first important step in

EAR computation is to perform facial landmark detection for

localization of eyes in a given frame from the video stream.

Once the facial landmarks for both eyes have been detected,

the corresponding EAR for each eye will be calculated [15].

Thus, the EAR is the singular value that relates the distances

between the vertical eye landmark points to the distances

between the horizontal landmark points [16].

 Figure 29: Landmarks on Open eye

 Figure 30: Landmarks on Closed eye

 The eye blink lasts approximately 100-400ms. But

drowsiness eye blink may last for 1-3s. So, the monitoring of

EAR takes place to monitor a blink of an eye whether a

drowsy blink of an eye takes place or not. Thus, EAR plays an

important role in the drowsiness detection of the eye [17]. The

audio warning runs when the fatigue, drowsiness of the driver

is detected. The alarm runs and thus alerts the driver. The

model has been tested under different conditions. The results

which are obtained without wearing spectacles are shown in

Figure 31 and Figure 32.

 Figure 31: Open eye result – without spectacles

 Figure 32: Closed eye result – without spectacles

 Figure 33: Open eye result – with spectacles

 Figure 34: Closed eye result – with spectacles

 The results which are obtained with spectacles are shown

in Figure 33 and Figure 34. The results which are obtained on

focusing light in front are shown in Figure 35 and Figure 36.

 Figure 35: Open eye result – Focusing light in front

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

20

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

 Figure 36: Closed eye result – Focusing light in front

 The results which are obtained with varying distances are

shown in Figure 37 and Figure 38.

 Figure 37: Open eye result with varying distances

 Figure 38: Closed eye result with varying distances

9. MODEL DEPLOYMENT ON ANDROID OS

 Firebase ML Kit is a google machine learning mobile

SDK for Android and IOS [18]. It is a straightforward way of

implementing the machine learning functionality with few

lines of code and also it provides space to import custom

TensorFlow Lite models in the mobile apps. ML kit needs the

TensorFlow lite model as input to be implemented in the

mobile app. Hence the TensorFlow model must be converted

to the TensorFlow Lite model. Tensor flow lite converter has

been used here for the conversion process. The tensor flow

converter is a python API tool to convert the tensor flow

model to the TensorFlow lite model format. The converted

TensorFlow lite model is in reduced size of the file and thus it

has been deployed in the mobile app easily. The converted

TensorFlow lite model is imported into the firebase ML kit.

The ML kit supports many machine learning features, the face

detection feature from Vision processing has been used.

Figure 39: Opening the app and starting the DMS activity

 Figure 40: Model deployment in Android OS

 The face detection API of the firebase ML kit provides the

following features such as face detection, facial features, and

contour extraction. Video frames from primary or secondary

cameras are fed as an input based upon the selection. Face

detection API detects the face and shows the bounding box.

Also, it detects facial features like an eye in this scenario. The

contour detection extracts the facial eye contours. Based upon

this probability from the left and right eye, the eye-opening

has been determined. If the probability of right and left eye-

opening mean is lesser than 3.0 the closeness of the eye has

been detected and thus the app provides an audio alert as

shown in Figure 39 and Figure 40.

©2012-21 International Journal of Information Technology and Electrical Engineering

ITEE, 10 (3), pp. 09-21, JUN 2021 Int. j. inf. technol. electr. eng.

21

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 10, Issue 3
June 2021

10. FINAL RESULTS

 Thus, the CNN model that has been constructed and trained

reaches 96.24% accuracy after optimization. This model

works well with both .csv and jpg images. For 16 jpg images,

this model has produced 93.75% depicted from the confusion

matrix. Unlike other models, deploying this trained and

optimized CNN model in windows OS has produced accurate

results under different conditions such as in presence of

spectacles, in absence of spectacles, focusing light in front,

and with varying distances. Thus, this model has been

deployed in android OS. Unlike other researches, it doesn’t

require additional hardware devices except for the mobile

phone.

11. FUTURE SCOPE

In this covid world, during this pandemic situation, many

states and countries have shifted to online education and work

from home. Monitoring a high number of learners and

listeners becomes very difficult. Alerting them through an

automated system is necessary. Thus, the developed model for

DMS can also be extended in the mere future for achieving

self-alertness.

REFERENCES

[1] ‘Drowsiness Detection with Machine Learning _ by

Grant Zhong _ Towards Data

Science’https://towardsdatascience.com/drowsiness-

detection-with-machine-learning-765a16ca208a.

[2] W. Han, Y. Yang, G. Bin Huang, O. Sourina, F.

Klanner, and C. Denk, ‘Driver Drowsiness Detection

Based on Novel Eye Openness Recognition Method

and Unsupervised Feature Learning’, Proc. - 2015

IEEE Int. Conf. Syst. Man, Cybern. SMC 2015, no.

October, pp. 1470–1475, 2016, doi:

10.1109/SMC.2015.260.

[3] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa,

M. Krichen, and K. Barkaoui, ‘Driver Drowsiness

Detection Model Using Convolutional Neural

Networks Techniques for Android Application’, 2020

IEEE Int. Conf. Informatics, IoT, Enabling Technol.

ICIoT 2020, pp. 237–242, 2020, doi:

10.1109/ICIoT48696.2020.9089484.

[4] S. K. Vasudevan, J. Anudeep, G. Kowshik, and P. R.

Nair, ‘An AI Approach for Real-Time Driver

Drowsiness Detection—A Novel Attempt with High

Accuracy’, Lect. Notes Networks Syst., vol. 127, pp.

305–316, 2021, doi: 10.1007/978-981-15-4218-3_30.

[5] V. R. Reddy Chirra, S. R. Uyyala, and V. K. Kishore

Kolli, ‘Deep CNN: A machine learning approach for

driver drowsiness detection based on eye state’, Rev.

d’Intelligence Artif., vol. 33, no. 6, pp. 461–466, 2019,

doi: 10.18280/ria.330609.

[6] A. Ignatov et al., ‘AI Benchmark: Running Deep

Neural Networks on Android Smartphones Radu

Timofte Luc Van Gool’.

[7] N. K. Sancheti, ‘Camera-based driver monitoring

system using deep learning Camera based driver

monitoring system using deep learning’.

[8] F. Song, X. Tan, X. Liu, and S. Chen, ‘Eyes closeness

detection from still images with multi-scale

histograms of principal oriented gradients’, Pattern

Recognit., vol. 47, no. 9, pp. 2825–2838, 2014, doi:

10.1016/j.patcog.2014.03.024.

[9] W. Deng and R. Wu, ‘Real-Time Driver-Drowsiness

Detection System Using Facial Features’, IEEE

Access, vol. 7, pp. 118727–

118738,2019,doi:10.1109/access.2019.2936663.

[10] E. R. Anas, P. Henriquez, and B. J. Matuszewski,

‘Online eye status detection in the wild with

convolutional neural networks’, VISIGRAPP 2017 -

Proc. 12th Int. Jt. Conf. Comput. Vision, Imaging

Comput. Graph. Theory Appl., vol. 6, no. Visigrapp,

pp. 88–95, 2017, doi: 10.5220/0006172700880095.

[11] J. Nabi, ‘Hyper-parameter Tuning Techniques in Deep

Learning | by Javaid Nabi | Towards Data Science’,

pp. 1–16,

2019,[Online].Available:https://towardsdatascience.co

m/hyper-parameter-tuning-techniques-in-deep-

learning-4dad592c63c8.

[12] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y.

Alzahrani, and R. Budiarto, ‘Evaluating Trust

Prediction and Confusion Matrix Measures for Web

Services Ranking’, IEEE Access, vol. 8, pp. 90847–

90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

[13] C. B. S. Maior, M. J. das C. Moura, J. M. M. Santana,

and I. D. Lins, ‘Real-time classification for

autonomous drowsiness detection using eye aspect

ratio’, Expert Syst. Appl., vol. 158, no. September,

2020, doi: 10.1016/j.eswa.2020.113505.

[14] M. Xu, ‘Robust object detection with real-time fusion

of multiview foreground silhouettes’, Opt. Eng., vol.

51, no. 4, p. 047202, 2012, doi:

10.1117/1.oe.51.4.047202.

[15] A. Dongre, A. Kumawat, A. S. Kushwah, and P. R.

Jain, ‘REAL-TIME DRIVER FATIGUE

DETECTION USING EYE DETECTION’, no. 05,

pp. 957–960, 2020.

[16] A. Kumar, ‘ISCAIE 2014 - 2014 IEEE Symposium on

Computer Applications and Industrial Electronics’,

ISCAIE 2014 - 2014 IEEE Symp. Comput. Appl. Ind.

Electron., p. 237, 2015.

[17] Adrian Rosebrock, ‘Training a custom dlib

shapepredictor-PyImageSearch’, Pyimagesearch, pp.

1–64, 2019, [Online].

Available:https://www.pyimagesearch.com/2019/12/1

6/training-a-custom-dlib-shape-predictor/.

[18] G. Poovarasan, S. Susikumar, S. Naveen, and

‘International Journal of Engineering Technology

Research & Management’, Academia.Edu, no. 03, pp.

131–134, 2020,

[Online].Available:http://www.academia.edu/downloa

d/62142316/Jan-2020-17-1579239734-820200219-

79933-ihqi97.pdf.

