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ABSTRACT 
According to a recent study and analysis in agriculture, various factors influence crop yield. Weeds are the most significant 

threat to crop yield. Weed control is a worldwide issue that has received much coverage in recent years. This paper presents a 

method for developing a deep convolutional neural network (CNN) for weed identification based on the modified YOLO 

architecture with several pre-processing techniques. An image labeler using the Roboflow framework is used to locate the 

regions of interest as part of the image processing. We have used novel Mosaic data augmentation in this model to address the 

well-known "small object detection problem." To train the developed model, we created 3600 images with different sizes of 

weed. Sizes of YOLO anchor box were calculated from the training dataset using a k-means clustering approach. The model that 

resulted was tested on 10% of the images. We may justify that the established model could detect weed with an appropriate 

recall rate and mAP based on the experimental results. This method determines whether an object on the farm is a weed by 

drawing a bounding box around it and assigning a label to it. 
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1. INTRODUCTION 
Weeds can have several adverse effects if they are not 

monitored, including crop yield loss and the production of 

many seeds; thus, a weed seed bank has developed in the area 

and grain contamination during harvest. One of the most 

challenging tasks is weed control in aspects of producing more 

crops. Weed detection is essential for implementing proper 

weed control strategies in cropping systems. It is a huge 

challenge to create an automatic weed control system that 

eliminates human intervention, improves accuracy, and saves 

time[1]. Object recognition is a computer vision task that 

involves detecting and classifying objects in an image from a 

collection of classes. It can be divided into classification and 

localization computer vision tasks. The role of localization in 

computer vision entails locating an object within an image. 

There are many options for marking the location's boundary 

after the object has been identified, but a bounding box is the 

most popular. The object detection task is problematic because 

it requires both image recognition and localization. As a result, 

any network used for this task must be capable of locating and 

classifying objects of interest within an image. Though state-

of-the-art methods have solved many challenges in object 

detection, the scale problem is also a problem in object 

detection. Because convolutional neural networks learn 

through feature detection, they frequently encounter issues 

when objects from different classes have similar features. 

Similarities in the pattern can lead to edge cases where other 

objects have similar characteristics at a smaller scale. These 

cases result in classification errors, lowering the network's 

accuracy. This is known as the small-scale similarity problem 

[2]. Agriculture is vigorously adopting artificial intelligence 

(A.I.) into its operations in these fields to overcome challenges 

such as labor shortages and rising demand. During peak 

seasons, farmers must hire expert farmworkers with the 

agricultural production experience for a wide range of 

activities, including sowing seeds, gathering fruit, weeding, 

and harvesting. Many of these functions are now done by 

robots, and Weed recognition is an essential computer vision 

application that assists robots in these activities. Highly 

developed discriminative technologies are required to 

distinguish between crops and weeds for practical applications 

[3]. In lettuce crops, Osorio et al. [4] proposed three weed 

estimation approaches based on deep learning and visual 

recognition. Support vector machines (SVM) were used in one 

form, YOLOV3 (you only look once V3) was used in another, 

and Mask R-CNN was used in the third. Convolutional Neural 

Networks were used by dos Santos Ferreira et al.[5] to 

recognize and distinguish weeds in soybean crop videos 

(CNNs). A. M. Mishra  et al.[6] discuss how to detect and 

interpret weed-based images in this article. Pre-processing, 

classification, and identification of crop weed and crop 

categorization are the steps carried out using image 

processing, artificial intelligence, and deep learning 

techniques. Researchers[7]found a total of 34 public image 

datasets. They classified them into three groups based on their 

intended uses: 15 datasets for weed control, ten datasets for 

fruit detection, and the remaining nine datasets for other 

applications. Bo et al. [8] provide a concise description of both 

emerging and common weed identification strategies for 

selective spraying, as well as a summary of recent trends in 

this field.  

Nima et al.[8] demonstrates a convolutional neural 

network-based approach for estimating the growth stage of 

different weed species in the number of leaves. The images 

included monocots and dicots from 18 common Danish weed 

species or families. The network achieved an accuracy of 87 

percent if we agree within 1 of the actual growth stage for 

these species, while the average accuracy for these species 

was 70 percent. Renjie Xu et al.[9] Suggest a novel ensemble 

learning approach for detecting forest fires in various 

scenarios in this paper. To begin, two separate learners, 

Yolov5 and EfficientDet, are combined to complete the fire 

detection process. To that end, we present a model for 

identifying different kinds of weeds based on object detection. 
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2. MATERIAL & METHODS 

2.1. Weed Model flowchart for dataset, training, and detection process 

As seen in Figure 1, the proposed methodology adopted for weed detection is composed of three stages. 

1) Weed Dataset Preparation, 2) Training process of Weed Model, 3) Evaluation & Testing of Weed Model. 

  

 
Figure 1 Weed Model flowchart for dataset, training, and detection process

2.2. Dataset Preparation 

The Weed datasets used in this paper were taken 

using a digital camera with a 1080 x 1920-pixel resolution, 

RGB color space, and JPG storage format. All of the 

images were taken in natural daylight, capturing the 

complexities of the growing environments, such as 

illumination variation, occlusion, and overlap. The dataset 

consists of two raw image directories. One thousand four 

hundred thirty images of food crops and weeds, as well as 

directory annotations, i.e., their 1430 counterpart 

annotation XML files, can be augmented with 3600 images 

of food crops and weeds using data augmentation. We 

have used the Roboflow framework for pre-processing & 

augmentation techniques in computer vision. Roboflow 

provides users with access to public datasets and the 

opportunity to upload their custom data. In addition, 

Roboflow supports a variety of annotation formats. All 

images were downsized to 640*640 pixels to investigate 

the effect of resizing on weed detection performance. 

Figure 2 shows some image samples from the generated 

dataset in various environments. We have used 70 % of 

images for training, 20 % of images for validation & 10 % 

of images for testing. After completing the necessary steps, 

we generate a version of the dataset and export it in the 

required format for all files in a zipped form[10].  

 

 

   

Figure 2 Weed samples with label what you see (LWYS) technique
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2.3. The architecture of the Proposed YOLO model for Weed Detection 

 

Yolov5's structure is based on a single-stage detection 

structure[9]. An overview of the modified weed detection 

model is shown in Figure 4, subdivided into the stages 

discussed below. 

1) Data processing and the image input terminal: CutMix, 

Mosaic  

2) Backbone: Using Focus, Cross Stage Partial Network, 

Leaky ReLU, and other techniques, it extracts the features of 

the high, middle, and low layers. 

3) Neck: Extraction of large, medium, and minor feature maps 

by fusing features at different levels. 

4) Head: Accomplish the final detection step, add the anchor 

box to the feature map, and generate the final output vector, 

including the class possibility, object score, and bounding box. 

5) Loss: Determine the loss of the prediction outcome and 

ground truth, then back-propagate to change the model's 

parameters. 

 
Figure 3 The architectural View of Proposed YOLO model for WEED DETECTION

2.3.1. Data processing improvements 

Mosaic data enhancement: Mosaic data enhancement uses 

four images, random scaling, random cropping, and random 

arrangement, whereas CutMix only uses two for stitching[11]. 

Its main benefits are: 

• Rich data set: Using four pictures at random, zooming 

randomly, and splicing randomly expands the detection data 

set; zooming randomly. The network is augmented by the 

addition of a large number of minor targets. 

Reduce GPU usage: Some may contend that random scaling 

and ordinary data augmentation can be done as well; however, 

many people only have one GPU, so when Mosaic boosts 

training, the data of four photographs can be directly 

calculated, resulting in a different Mini-batch size and a GPU 

can achieve better results. Below figure 4 represents the 

results when the mosaic data enhancement is applied to the 

dataset in Figure 2. 
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Figure 4 Weed dataset after Mosaic Data Enhancement

2.3.2. Backbone  

Backbone is made up of a convolutional neural 

network that aggregates and shapes image features at various 

levels of granularity. Using Focus, CSP, Leaky ReLU, and 

other techniques, extract the features of the high, middle, and 

low layers. 

a. Focus 

         Instead of stride-2 convolution, the first layer of 

the network performs pixel un-shuffling; the design of this 

module is primarily to minimize the amount of calculation and 

speed up; Size of input in Yolov5 is 640x640x3. As depicted 

in Figure 5, the role of the focus layer is to copy it into four 

copies and then slice the four pictures into four 3x320x320 

slices using the slicing operation. Then use concat to combine 

the four slices from the depth to generate a 12x320x320 

output, and then use the convolutional layer with the number 

of convolution kernels set to 64 to generate a 64x320x320 

output, and finally use batch norm and leaky relu to input the 

result to the next convolutional layer. 

 
Figure 5 Focus Module 

b. CSPNet- Cross Stage Partial Network 

The main goal of CSPNet Cross Stage Partial Network 

was to make it possible for this architecture to achieve a more 

prosperous gradient combination while reducing computation 

time. This is accomplished by splitting the base layer's 

function map into two parts and then combining them using a 

suggested cross-stage hierarchy, which is shown in figure 6. 

As a result, CSPNet will drastically reduce the amount of 

computation required and increase the inference speed and 

accuracy [12]. 

 

 
Figure 6 Cross Stage Partial Network 
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2.3.1. SPP-Spatial Pyramid Pooling 

      SPP is a pooling layer that removes the network's 

fixed-size constraint, allowing a CNN to work with any size 

input image. The maximum pooling method of 1×1, 5×5, 9×9, 

and 13×13 is used for multi-scale fusion[13]. As shown in 

figure 7, the input is 512x20x20, the output is 256x20x20 after 

the 1x1 convolutional layer, and it is then downsampled by 

three parallel Max Pools of different kernel sizes (5, 9, 13). It 

is important to note that the max pool's padding is consistent 

throughout. After splicing the result, add it to the initial 

feature, output 1024x20x20, and finally, with a 512-

convolution kernel, restore it to 512x20x20. 

 
Figure 7 SPP MODULE 

2.3.2. PANet Path Aggregation Network 

PANet[14] is found in the YOLO model's neck, and 

it is primarily used to improve instance segmentation by 

preserving spatial information. 

a. Feature Pyramid Network (FPN) 

 
Figure 8 (a) FPN backbone. (b) Bottom-up path augmentation [15] 

Bottom-Up Pathway  

The feedforward computation of the backbone 

ConvNet is the bottom-up pathway. Each stage has one 

pyramid level. The reference set of feature maps for 

improving the top-down pathway by the lateral connection 

will output the last layer of each stage. 

Top-Down Pathway and Lateral Connection 
Higher-resolution features are upsampled from 

higher-pyramid-level feature maps, which are spatially coarser 

yet semantically stronger. For simplicity's purposes, the spatial 

resolution is upsampled by a factor of two using the nearest 

neighbor. Each lateral link combines feature maps from the 

bottom-up and top-down pathways of the same spatial size. To 

minimize the channel dimensions, the feature maps from the 

bottom-up pathway uses 1 x 1 convolution. By element-wise 

addition, the feature maps from the bottom-up and top-down 

pathways are merged. Finally, a 3×3 convolution is applied to 

each integrated map to produce the final feature map, which is 

graphically represented in figure 8.  

2.3.3. Head (detector) Output 

The head's role in a single-stage detector is to 

perform dense prediction. The final prediction is the dense 

prediction, which is an array representing the calculated 

bounding box coordinates (center, height, and width), 

confidence score, and the label. Head creates three separate 

Feature maps to achieve a multi-scale prediction model that 

can accommodate small, medium, and oversized items. 

2.3.4. Activation Function 

In YOLO V5, the middle/hidden layer uses the Leaky 

ReLU activation function, while the final detection layer uses 

the Sigmoid activation function[16]. 

 

a. Leaky ReLU 

Leaky ReLU is a ReLU variant. It is an attempt to 

find a solution to the diminishing ReLU problem. Rather than 

being completely zero, Leaky ReLU has a slight slope for 

negative values. When x is less than zero, a leaky ReLU will 

have y = ax. (a=0.01). It is called Randomized ReLU when a 

is not 0.01.  

b. Sigmoid Function 

The Sigmoid Function curve represents an S-shape. 

We use the Sigmoid Function because it occurs between two 

points (0 to 1). As a result, it is instrumental in models where 

the probability must be predicted as an output. Since the 

probability of something only exists between 0 and 1, the 

sigmoid is the best option. 

3. EXPERIMENTAL SETUP & ALGORITHM 

IMPLEMENTATION  

Experiments were carried out on a device with an Intel(R) 

Core (T.M.) i5-9300H CPU running at 2.40GHz and an 

NVIDIA GeForce GTX 1050 GPU. A batch size of 32 was 

chosen. The model was trained for 300 epochs at a learning 

rate of 0.001. Images with a resolution of 640 x 640 pixels are 

used as inputs. The momentum and weight decay rates were 

set to 0.937 and 0.0005, respectively. 

3.1. Adaptive anchor frame calculation 

To feed into the training phase, we need an estimate of 

the anchor boxes of the labelled images. Anchor boxes are a 

set of fixed-height and-width bounding boxes that are utilised 

to capture the scale and aspect ratio of the object classes being 

detected. They are usually selected based on the scale of the 
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objects in the training datasets. There will be anchor boxes 

with initial length and width in the Yolo algorithm for various 

data sets. During network training, the network generates a 

prediction frame based on the initial anchor frame, compares it 

to the ground truth of the actual frame, measures the distance 

between the two, and then updates the network parameters in a 

reverse way. 

 
Figure 9 Attributes of Bounding Box[17] 

The attributes of a bounding box are shown in figure 

11, where tx, ty, tw, and th are the box coordinates, P0 is the 

objectness score, and P1, P2, P3. The class scores are Pc, and 

the number of bounding boxes is B. 

We're not going to employ the default anchor box sizes in our 

network; instead, we used the K-means clustering approach to 

generate our anchor box sizes to cluster object bounding box 

sizes from the labeled training dataset. The dotted box in the 

diagram represents an anchor box, with pw and ph defining its 

width and height, respectively. The network predicts tw and 

th, which, when exponentiated, scales the anchor box 

dimensions to match the detected object. The parameters tx 

and ty, respectively, indicate the x/y location of the center of 

the bounding box inside the cell. cx and cy represent the offset 

of the cell origin from the image origin to offset the bounding 

box center from the cell origin yields the x/y center of the 

bounding box for the image origin. The final predicted 

bounding box in figure 10, shown in blue, results from 

this[18]. 

  

 
 

Figure 10 Bounding boxes with dimension priors and             

estimation of the position 

3.2. The deep learning network's training procedure 

We began training our network after establishing the 

optimal number of anchor boxes. The network was trained 

with a learning rate of 0.001 and a mini-batch size of 32 image 

samples over 300 epochs. An epoch is a complete training 

period in which all training vectors are being used for the first 

time to update the weights on the training set. 

3.3. Performance Evaluation Metrics 

Intersection over Union is the most commonly used loss 

function in object detection and instance segmentation tasks 

(IOU). Intersection Over Union (IOU), a Jaccard Index-based 

test, tests the overlap between two bounding boxes. It is 

necessary to have a ground truth bounding box (Bgt) and a 

predicted bounding box (Bp). Using the IOU, we will 

determine whether detection is correct (True Positive) or not 

(False Positive). The area of intersection between the 

predicted and ground truth bounding boxes is divided by the 

Union area between them to measure IOU.[19] 

 

3.4. Estimation of the training loss 

To ensure that our training is correct, for each iteration, 

we look at the training loss. By adding the localization error, 

confidence loss, and classification loss, the Mean Squared 

Error (MSE) is determined. The discrepancy between the 

intended and ground truth bounding boxes called the 

localization error. When an object is discovered, the 

confidence loss is calculated, and the objectness error is 

measured when no object is detected. Finally, the squared 

error between the class conditional probabilities for each class 

is the classification loss[20].  

3.5. Testing of the trained network 

Ten percent of the images from each class are set aside 

for tests from the dataset. The goal is to see how well the 

network can distinguish between different types of weeds. In 

all ten percent of the images, the learned network detects 

weeds, as well as bounding boxes and class labels[20]. 

3.6. Non-Maximal Suppression (NMS) 

The post-processing of target detection, as well as the 

screening of a large number of target frames, typically 

necessitates the use of the NMS. Only the optimal bounding 

box is held using Non-Maximal Suppression (NMS). The first 

step in NMS is to eliminate all predicted bounding boxes with 

a detection probability more diminutive than a predetermined 

NMS threshold. This NMS threshold was set to 0.6 in our 

experiment[21]. 

3.7. Precision-Recall and the Confidence Threshold 

Precision and recall are essential factors to consider when 

assessing the trained network's overall results. Precision refers 

to the detector's ability to make correct classifications, while 

recall refers to the detector's ability to find all relevant objects. 

Bounding boxes are predicted by the object detector, each 

with a confidence score. Then, the probability of the object 

class appearing in the bounding box is calculated using the 

confidence score. As a result, we set a threshold to convert 

these confidence probabilities into classifications, with true 

positives (T.P.) defined as detections with a confidence score 

above the predetermined threshold and false positives defined 

as detections with a confidence score below the threshold 

(F.P.)[22]. 
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4. EXPERIMENTAL RESULTS 

4.1. Training loss 

To assess the performance of the network training process, the training loss per network iteration was calculated. If the network 

has gone through 300 epochs in total, and we are just looking at the first 50-100 epoch; after the first 50-100 epoch, we can see 

that the training failure has decreased to about 50-60 %. As more iterations are completed, the model continues to learn more, 

resulting in reduced training loss in subsequent iterations. From the 300 epoch onwards, we can see a relatively constant loss. 

This means that the network's learning is becoming more accurate, and therefore the training loss is probably slight, which is 

graphically shown in figure 11[20]. 

4.2. Performance Metrics 

Below table-1 summarizes the performance of proposed different yolov5 architecture against each evaluation metrics. 
The Objectness score, class probability, and bounding box regression score are used to calculate the loss. The loss of class 

probability and target score are calculated in yolov5 using binary cross-entropy and Logit's loss function. 

 

Table 1 Recall rate & mAP for Different model depth 

Yolo Models Training Time No of layers Recall mAP@0.5 

Yolov5s 1 Hr 22 min 283 0.82 0.767 

Yolov5m 2 hr 30 min 391 0.85 0.768 

Yolov5l 4 hr 5 min 499 0.89 0.747 

Yolov5x 7 hr 24 min 607 0.91 0.785 

Figure 11 depicts the proposed network's training loss curve. As can be seen, the training loss dropped drastically at the 

beginning of the training stage before eventually settling at 300 epochs. In the validation dataset, we assessed the performance 

of the generated model[23].  

 

 

 
 

  

 

Figure 11 Various performance Metrics Evaluation 
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4.3. Detection/Classification of weeds using testing data 

    The weed model visualization results shown in Figure 14 were carried out to view the detected different sizes of weeds. 

This indicates that our model could identify weeds in real-time with better prediction, which is significant in agriculture. 

 

   

 
  

Figure 12 Weed Detection results of Proposed Algorithm 

5. CONCLUSION 

In this paper, different Deep Learning yolov5 Models 

like yolov5s, yolov5m, yolov5l, and yolov5x were trained for 

more than 3600 images. After fine-tuning the parameters of 

the network, a Recall rate of 0.82 for yolov5s, 0.88 for 

yolov5m, 0.92 for yolov5l, and 0.94 for yolov5x had been 

achieved. From the experimental results obtained, we can 

justify that the developed model was able to detect weed with 

an acceptable recall rate & mAP. By identifying and detecting 

the various available weeds, this effort aims to contribute to 

novel deep learning technologies for precision farming. By 

circling an object on the farm with a bounding box and 

providing a label to it, this approach may determine whether 

or not it is a weed. This will enable weed detection and 

selective spraying/weeding easier for UAVs and ground 

robots, contributing to precision agriculture. 
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