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ABSTRACT

Every country's fundamental need is for agricultural products. Infected plants have a negative influence on the country's
agricultural productivity and economic resources. This paper presents an intelligent system that is used to detect and classify
plant leaf diseases using deep learning techniques. The PlantVillage dataset, which contains 38 different classes, is used. This
dataset contains 54,305 images of plants' leaves and their diseases. In this research work, three pre-trained CNN models
(MobileNet, VGGL16, and Inception V3) are used to classify plant leaf diseases into 38 different classes. As a result, | obtained
excellent accuracy during the training phase and testing phase. | have achieved an accuracy of 93.30% for the proposed VGG16
model, 99.51% for the proposed MobileNet model, and 89.31% for the proposed InceptionV3 model during training. During
testing using test data, the accuracy of modals was found to be 94% for the proposed VGG16 model, 99% for the proposed

MobileNet model, and 91% for the proposed InceptionVV3 model.

Keywords: Plant Diseases, Deep Learning, CNN (Convolution Neural Network).

1. INTRODUCTION

Agriculture is the foundation of all human
civilizations. Agriculture is the primary source of food, raw
materials, and fuel, all of which contribute to a country's
economic prosperity. The focus is on increasing production
without taking into account the environmental consequences
that have resulted in environmental degradation. Plant diseases
are extremely significant since they can affect both the quality
and quantity of plants in agricultural growth. Plant diseases
are caused by fungus, bacteria, viruses, moulds, and other
microorganisms. Farmers or specialists are able to recognize
various plant diseases with naked eyes. But this approach can
be expensive, time-consuming, and incorrect. Therefore, deep
learning based methods are used for detection and
classification of plant diseases. The images of plant diseases
are used for this research.

The PlantVillage dataset, which contains 54,305 images
of 14 crop species with 26 diseases, is used for this work. To
detect and classify thirty-eight different classes of plant
diseases, | propose an intelligent system based on deep
learning algorithms  with transfer learning. VGG16,
MobileNet, and InceptionVV3 are three pre-trained deep
learning architectures that | chose.

The following is the order of the rest of the paper: In
section 2, a literature review is presented. The dataset used in
this research work is explained in section 3. Intelligent expert
system methodology is explained in Section 4. In section 5,
the experiment and results are discussed. Conclusions and
future work are presented in section 6.

2. RELATED WORK
In the literature, various image processing and deep
learning approaches used to classify numerous plant diseases
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are discussed. S. S. Sannakki and V. S. Rajpurohit [1]
presented work that focuses on the way of segmenting the
defective region and using color and texture as characteristics.
For the categorization, they employed a neural network
classifier. The key benefit is that it converts to L*a*b in order
to extract the image's chromaticity layers, and categorization
is determined to be 97.30 percent correct. The biggest
disadvantage is that it can only be used for a few harvests. P.
R. Rothe and R. V. Kshirsagar [2] developed "Cotton Leaf
Disease Identification Using Pattern Recognition Techniques,"”
which used snake segmentation and Hu's moments as a
distinguishing characteristic. The BPNN classifier addresses
the various class difficulties by using an active contour model
to restrict the vitality inside the infection area. It was
discovered that the average categorization was 85.52 percent.
Lee et al. [3] proposed a hybrid model to obtain features of a
leaf using CNN and classify the extracted features of the leaf.
Durmus et al. [4] used AlexNet and SqueezeNet pre-trained
CNN architectures for the detection of diseases of tomato
leaves. K.P. Ferentinos, [5] developed a CNN model for the
detection and diagnosis of plant disease using simple leaf
images of healthy and diseased plants. The final model
achieved 99.53% accuracy. Prajwala TM, et al. [6] created a
system to identify and classify diseases in tomato leaves using
a variant of the CNN architecture known as LeNet. This
system has a 94-95 percent overall accuracy rating. Omkar
Kulkarni [7] used a transfer learning approach to build the
CNN model using InceptionV3 and MobileNet pre-trained
models. These models are implemented by using five different
types of crops from the PlantVillage dataset. Sammy V.
Militante ,et. al. [8] Designed a system to detect and recognize
different plant varieties specifically potato, sugarcane, tomato,
apple, Corn and grapes. The system can also detect several
plant diseases. Marwan Adnan Jasim and Jamal Mustafa AL-
Tuwaijari [9] developed a system to detect and classify plant
leaf diseases using deep learning techniques. The system can
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classify plant diseases into 15 different classes of the |9 | Corn_(maize) Com | 1192 | 964 178 50
PlantVillage dataset. mon_rust_
10 | Corn_(maize)_healt | 1162 | 939 174 49
An intelligent system that can perform multi-class hy
categorization of a variety of plant diseases is required. [ 11 | Corn_(maize) Nort | 985 797 147 41
According to recent advances in computational deep learning, hern_Leaf Blight
CNN-based approaches appear to be a promising strategy for ["12 | Grape Black_rot 1180 | 953 177 50
the categorization of plant diseases. | use the concept of [13 Grape_Esca_(Black | 1383 | 1118 | 207 58
transfer learning with CNN models. _Measles)
14 | Grape_healthy 423 342 63 18
3. DATASET 15 | Grape_Leaf blight | 1076 | 870 161 45
(Isariopsis_Leaf Sp
ot)
16 | Orange Haunglong | 5507 | 4447 | 826 234
bing_(Citrus_greeni
ng)
17 | Peach_Bacterial_sp | 2297 | 1856 | 344 97
ot
18 | Peach_healthy 360 291 54 15
19 | Pepper_bell_Bacter | 997 806 149 42
ial_spot
20 | Pepper_bell_health | 1478 | 1195 | 221 62
y
21 | Potato Early blight | 1000 | 808 150 42
22 | Potato_healthy 152 124 22 6
23 | Potato_Late blight | 1000 | 808 150 42
24 | Raspberry healthy | 371 301 55 15
25 | Soybean healthy 5090 | 4111 | 763 216
26 | Squash_Powdery_ | 1835 | 1482 | 275 78
mildew
Fig.1. An example of leaf images from the PlantVillage 27 | Strawberry_healthy | 456 | 369 | 68 19
dataset 28 | Strawberry_Leaf sc | 1109 | 896 166 47
orch
Here, the PlantVillage Dataset is used, which |29 | Tomato_Bacterial_s | 2127 | 1718 | 319 |90
contains 54,305 images of 14 crop species with 26 diseases. pot
We divide the dataset into three parts: training (80%), | 30 | Tomato_Early_blig | 1000 | 808 | 150 | 42
validation (15%), and testing (05%). The details of each class ht
are given in Table 1. 31 | Tomato_healthy 1591 | 1286 | 238 67
32 | Tomato_Late bligh | 1909 | 1542 | 286 81
t
o S 33 | Tomato_Leaf_Mold | 952 770 142 40
o _ E~| B84~ | 24| |34 | Tomato_Septoria | | 1771 | 1431 | 265 |75
Z| 8 < EX | B | =8
s | 8 5 SO | S | g eaf_spot
é | O F FE | >2 | -S| 35 [ Tomato_Spider_mit | 1676 | 1354 | 251 | 71
1 | Apple Apple scab | 630 510 94 26 esTwo-
2 | Apple Black_rot 621 | 502 |93 26 spotted_spider_mite
3 | Apple_Cedar_apple | 275 223 41 11 36 | Tomato_Target Sp | 1404 | 1135 | 210 59
rust ot
4 | Apple_healthy 1645 | 1330 | 246 69 37 Tomato__Tomato_m 373 303 55 15
5 | Blueberry healthy | 1502 | 1214 | 225 63 0salC_virus
6 | Cherry (including_ | 854 690 128 36 38 | Tomato_Tomato_Y | 5357 | 4327 | 803 227
50ur)_hea|thy E| |0W_Leaf_CUf|_V
7 | Cherry_(including_ | 1052 | 851 157 44 Irus
Sour)_Powdery_m” Total 54305 | 43887 | 8129 2289
dew
8 | Corn_(maize) Cerc | 513 416 76 21 Table-1. Dataset Distribution
ospora_leaf spot
Gray_leaf spot + Data Pre-Processing: The leaf image in the
PlantVillage dataset has a size of 256x256 pixels and
ITEE, 10 (5), pp. 18-26, OCT 2021 Int. j. inf. technol. electr. eng.

19




Volume 10, Issue 5

October 2021

ITEE Journal ISSN: - 2306-708X

Information Technology & Electrical Engineering

©2012-21 International Journal of Information Technology and Electrical Engineering

RGB values in the range of 0 to 255. The original
image is then resized into three different sizes for
three different models. The input image size for the
VGG16 model, the MobileNet model, and the
Inceptionvd model is 224*224, 224*224, and
150*150, respectively. To normalise RGB values,
each pixel's RGB value is divided by 255 to rescale
its value from 0 to 1.

+ Data Augmentation: The deep learning model
requires a large amount of data for training to
produce good results. To increase the size of the
training data, the data augmentation process is
required. The number of images for training is 43887,
for validation it is 8129, and for testing it is 2289.
The data augmentation is only applied to training
data. Many geometrical transformations are applied
to the image of the training data in the data
augmentation process. We employ shear_range,
zoom_range, width_shift_range, height_shift_range,
and fill_mode to transform the images. The
ImageDataGenerator function is used for all these
transformations.

4. METHODOLOGY

The methodology of our proposed intelligent system is
presented in Fig.2.

PlantVillage

DATASET

Split

Y
I !
Validation Data Testing Data

Y y

Training data

Data Augmentation &
Pre Processing

Pre--Processing Pre- Processing

4 y

Model Model
Evaluation Testing

Model Training
Process

[y
v

[y
Y

CNN : .
Model Classification
Result

Fig. 2. Methodology of proposed intelligent system

There are three phases to the proposed system: training,
validation, and testing. In the training phase, the model needs
to be trained using training data that has passed through the
data preprocessing and augmentation process. For training,
values for batch size, train steps, and epoch are required. For
all the pre-trained CNN models used in this research, the
ITEE, 10 (5), pp. 18-26, OCT 2021 Int. j. inf. technol

training dataset has 43887 images. So the values of batch size,
train steps, and epoch are as mentioned below.

« Batch Size: The batch size is a hyperparameter that
defines the number of samples to work through
before updating the internal parameters of the CNN
model. For this system, the batch size value is 128.

+ Train step: The Train Step is defined as the total
number of samples in the training data divided by
batch size. For this system, the train step value is 343.

« Epoch: The Epoch is a hyperparameter that defines
the number of times the CNN model will work
through the entire training data. For this system, the
epoch value is 10.

I must import all three models from the Keras API after
determining batch size, epoch, and training steps. This
research employed a transfer learning strategy and three pre-
trained CNN models. The transfer learning method is a deep
learning method in which a previously trained model is
utilised as the basis for a new model on a similar problem. For
feature extraction from images, the pre-trained CNN models
VGG16, MobileNet, and Inception V3 are employed. For
feature extraction and classification, we made certain changes
to the architecture of these models.

The VGG16 model has a total of 23 layers. We removed
the last four layers of the VGG16 model that worked as part of
the classification process. Next, we freeze the remaining 19
layers so that the weight does not change during the workout.
Then we added a flatten layer and a dense layer with the
RELU activation function. Then two new layers were added:
the dropout layer and the dense layer. A dropout layer has
been added to reduce the overfitting problem. A dense layer is
added with 38 output classes and an activation function set to
sigmoid. The dense layer is processed as a fully connected
layer. We applied a fine-tuning process by removing layers
and adding them to a model for classification. To compile the
model, we used the Adam optimizer with a learning rate set to
0.0001 and categorical_crossentropy as the loss function.

The number of layers in the pre-trained MobileNet model
is 93. We have removed the last five layers from the
MobileNet model. Then two new layers were added: the
dropout layer and the dense layer. The dense layer activation
function is set to the soft max function. Next, we freeze all the
layers of the model except the last 23 layers. To compile the
model, we use the Adam optimizer with a learning rate of
0.0001 and categorial_crossentropy as a loss function.

There are 313 layers in the InceptionV3 model
architecture. By setting the include top parameter to false
while loading the model, we were able to remove
InceptionV3's fully connected output layer. The model's layers
are then frozen. Then we added a dense layer and a flatten
layer. We set the activation function of the dense layer to
RELU. Then, two new layers, a dropout layer and a dense
layer, are added to the model. The dense layer output
parameter is set to 38 class and sigmoid as the activation
function.
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5. EXPERIMENTS AND RESULTS

Our main goal in this study is to create an intelligent
system for plant disease classification based on a deep
learning model. | have implemented all these models in
Python using a Jupyter notebook. The model is evaluated and
validated using the cross-validation approach. | have passed
training data as well as validation data to the model at the time
of training. | plotted the learning curve of our model to check
its learning process. The learning curve can be used to
diagnose underfit, overfit, or well-fit problems in the model. |
have achieved an accuracy of 93.30% for the proposed
VGG16 model, 99.51% for the proposed MobileNet model,
and 89.31% for the proposed InceptionV3 model during
training. The graph in Fig. 3 shows the comparison of the
accuracy values of the proposed VGG16 model, the proposed
MobileNet model, and the proposed InceptionV3 model
during the training process.

VGG16 - Training and Validation Accuracy

= Training Accuracy
Validation Accuracy

0 2 4 8 8
epoch

MobileNet - Training and Validation Accuracy
—_— —

086 —— Taining Accuracy
Validation Accuracy

0 2 a 8 8
gpoch

Loo InceptionV3 - Training and Validation Accuracy

095
090
085

guao

5o
070
065
0.60

= Taining Accuracy
Validation Accuracy

0 2 4 8 8
epoch

Fig. 3. Comparison of accuracy values of the VGG16 model,
the MobileNet model, and the Inception\VV3 model

The graph in Fig. 4 shows the comparison of the loss
values of the VGG16 model, the MobileNet model, and the

ITEE, 10 (5), pp. 18-26, OCT 2021

InceptionV3 model during the training process. VGG16,
MobileNet, and Inception V3 do not have underfitting or
overfitting concerns because the value of loss from all models
is reduced throughout training.

VGG16 - Training and Validation Loss

—— Taining Loss
Validation Loss

=
i

Cross Entropy

=
ra

=
(=1

epoch

MobileNet - Training and Validation Loss

=
=

—— Training Loss
Validation Loss

= = =
- = =

Cross Entropy

=
P

—
0 2 2 5 B
epoch

0.0

Inceptiony3 - Training and Validation Loss

= Taining Loss
Walidation Loss

Cross Entropy

0.0 T T T T T
0 2 4 & B
epoch

Fig. 4. Comparison of loss values of the VGG16 model,
the MobileNet model, and the InceptionVV3 model

* Recall, Precision, and F-1 Score: The PlantVillage
is a dataset with a lot of class imbalance in it. As a
result, for each model, | provided a recall, precision,
and F1 score to evaluate the proposed architectures.
The Testing dataset is used to evaluate our proposed
architectures. The recall, precision, fl-score, and
support of proposed models are shown in different
table numbers 2, 3, and 4.

precision= true positivetotallpredicted positive
recall= true positivetotallactual positive
f1 score =2x( (precision*recall)l(precision+recall))

Plant precision recall fl-score | support
Disease
Class
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Plant precision recall fl-score | suppor
Disease t
Class
10 0.97 0.93 0.95 41
11 1 1 1 49
12 1 1 1 50
13 1 1 1 58
14 1 1 1 45
15 1 1 1 18
16 1 1 1 234
17 1 1 1 97
18 1 1 1 15
19 1 1 1 42
20 1 1 1 62
21 1 1 1 42
22 0.98 1 0.99 42
23 1 0.83 0.91 6
24 1 1 1 15
25 1 1 1 216
26 1 1 1 78
27 1 1 1 47
28 1 1 1 19
29 1 0.98 0.99 90
30 1 0.88 0.94 42
31 0.98 1 0.99 81
32 1 0.95 0.97 40
33 0.99 1 0.99 75
34 0.99 0.97 0.98 71
35 0.88 0.98 0.93 59
36 1 1 1 227
37 1 1 1 15
38 1 1 1 67
accuracy 0.99 | 2289
Macro 0.99 0.99 0.99 | 2289
avg
weighted 0.99 0.99 0.99 | 2289
avg

Table-3. Classification Report of Proposed MobileNet Model

1 0.96 0.88 0.92 26
2 1 0.92 0.96 26
3 1 0.91 0.95 11
4 0.91 1 0.95 69
5 0.98 0.98 0.98 63
6 0.98 0.98 0.98 44
7 1 1 1 36
8 0.78 0.67 0.72 21
9 0.98 1 0.99 50
10 0.84 0.88 0.86 41
11 1 1 1 49
12 1 0.84 0.91 50
13 0.88 1 0.94 58
14 1 0.96 0.98 45
15 1 1 1 18
16 1 0.99 0.99 234
17 1 0.97 0.98 97
18 0.88 0.93 0.9 15
19 0.95 0.95 0.95 42
20 0.94 1 0.97 62
21 0.97 0.81 0.88 42
22 0.82 0.95 0.88 42
23 0.71 0.83 0.77 6
24 0.94 1 0.97 15
25 1 0.99 0.99 216
26 1 1 1 78
27 0.98 0.98 0.98 47
28 1 1 1 19
29 0.9 0.94 0.92 90
30 0.87 0.48 0.62 42
31 0.93 0.8 0.86 81
32 0.89 0.82 0.86 40
33 0.9 0.8 0.85 75
34 0.65 0.99 0.79 71
35 0.74 0.83 0.78 59
36 0.97 0.96 0.97 227
37 0.93 0.87 0.9 15
38 1 0.93 0.96 67
accuracy 0.94 2289
macro 0.93 0.92 0.92 2289
avg
weighted 0.94 0.94 0.94 | 2289
avg

Table-2. Classification Report of Proposed VGG16 Model

Plant precision recall fl-score | suppor

Disease t

Class
1 1 0.96 0.98 26
2 1 1 1 26
3 1 1 1 11
4 0.99 1 0.99 69
5 1 1 1 63
6 1 1 1 44
7 1 1 1 36
8 0.87 0.95 0.91 21
9 1 1 1 50

Plant precision | recall fl-score | support

Disease

Class
1 0.78 0.81 0.79 26
2 0.86 0.96 0.91 26
3 0.91 0.91 0.91 11
4 0.93 0.93 0.93 69
5 0.92 0.94 0.93 63
6 0.97 0.89 0.93 44
7 0.95 0.97 0.96 36
8 0.69 0.86 0.77 21
9 0.98 1 0.99 50
10 0.89 0.76 0.82 41
11 1 0.98 0.99 49
12 0.91 0.96 0.93 50
13 0.97 0.97 0.97 58
14 0.95 0.91 0.93 45
15 0.89 0.94 0.92 18
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During testing using test data, the accuracy of our deployed to the web using Streamlit. Fig. 8 shows the system
suggested modals was found to be 94% for the proposed webapp output.
VGG16 model, 99% for the proposed MobileNet model, and
91% for the proposed InceptionV3 model. The models are

(im] ‘ _ Home Page - Select or create a x‘ App-plantdisease - Jupyter Not= X o App-plantdisease-1. Streamlit X | 4 = g X

& > O @ localhost8501/#plant-disease-classification-using-deep-leaming-model 6 I= b X

Plant Disease Classification
Using Deep Learning Model

Plant DIsease Classification Example

Upload a Plant leaf Image for Plant Disease classification

Drag and?rop '\Vlerfjere _—

mage (1).JPG 3.3k8 X

Classifying...

Mobilenet Mobilenet output

Apple___Apple_scab
VGG16

Inceptionv3

Fig. 8. Webapp output

6. CONCLUSION AND FUTURE WORK 2015 International Conference on Pervasive Computing
(ICPC), pp. 1-6, 2015.

An intelligent system is presented to do multi-class )
classification of plant diseases using deep learning models. [3] ~ Sue Han Lee and Chee Seng Chan and Simon Joseph

The transfer learning approach has been applied. Three pre- Mayo and Paolo Remagnino, "How deep learning
trained CNN models, VGG16, Mobilenet, and InceptionV/3, extracts and learns leaf features for plant classification,"
are used in the research work. The proposed system is able to Pattern Recognition, vol. 71, pp. 1-13, 2017.

classify plant diseases into 38 different classes of the ] ) )
PlantVillage dataset. The testing accuracy of proposed models [4] ~ Halil Durmus and Ece Olcay G, "Disease detection on

VGG16, MobileNet, and InceptionV3 was achieved at 94%, the leaves of the tomato plants by using deep learning,”
99%, and 91%, respectively. The models are integrated into 2017 6th International Conference on  Agro-
the web page using Streamlit. Geoinformatics, pp. 1-5, 2017.

As part of future research, other learning rates and
optimizers might be used to test the suggested system. | will [5] ~ Konstantinos P.Ferentinos, "Deep learning models for
also work on creating a Smartphone-based expert system. plant disease detection and diagnosis,” Computers and
Electronics in, vol. 145, pp. 311-318, 2018.
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