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ABSTRACT 
 

This paper presents a framework for spatial analysis of multidimensional topographic data from point clouds. We have highlighted 

the challenges of working with multidimensional data for representing the topographic regions for spatial analysis and explained 

how spatial morphological methods can become first-hand support for processing unstructured data stored in point clouds. The 

theoretical model for spatial analysis is supported by experimental work on point cloud data of a random topographic region 

involving a sparse forest region. Special emphasis is given to computing ground-projected area estimations of geographical 

features. It is observed that morphological processing is equally useful for unstructured data points for extracting geospatial 

features including tree crowns and rooftops.  This paper also highlights challenges in handling large data sets proposes to use 

morphology-based for addressing these problems and sets the pointer for future research in spatial analysis. The overall accuracy 

of 98.7% is obtained for surface object classification and segmentation. 
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1.  INTRODUCTION 
 

Spatial investigation is now a broader field that 

uncovers several facts and aspects of our environment. With 

technological advances in sensing, imaging, and storage, the 

size and the form of spatial data have also changed. A paradigm 

shift is seen in the use of image and object-based data in real 

space. It is now possible to explore the geographical 

environment including topography, hydrology, and forestry 

better than ever. Data acquisition, representation, and 

processing are moving towards higher dimensional space rather 

than using legacy two-dimensional systems. A major source of 

spatial information is multidimensional point data acquired 

from modern imaging sensors including LiDAR. The early 

1990s used topographic maps as the primary source of 

quantitative information on topography. With the use of 

photogrammetry and the data generated from LiDAR sources, 

the two-dimensional discrete functions of elevation grew to 

three-dimensional space and allowed estimating generating 

terrain models and canopy estimates from elevation models. 

Some of the current research trends in terrain modeling include  

 Analysis of relationships between surface properties 

and topographic characteristics.  

 Exploiting the resulting knowledge for the predictive 

mapping and analysis of geographical features such as 

folds, domes, and rooftop-like structures.  

 Finding and analyzing structural lies and faults, 

including their relations with other components in the 

topographic patch.  

Analyzing topographic data involves evaluating local 

and nonlocal morphometric attributes/variables. A local 

morphometric attribute is usually used to define the surface 

geometry in the neighborhood of the given test point. Contrary 

to the local attribute, the nonlocal topographic attribute 

describes a relative position of the given point on the surface. 

Some of the local morphometric attributes include curvature 

and slope aspects. The non-local morphometric attribute 

includes catchment and dispersive area estimates.  

The study of the spatial distribution of natural and 

man-made structures has been an active area of interest to 

geographic professionals and earth explorers. Technology-

assisted spatial exploration and analysis have generated much 

interest in recent times. Description of the scene of object using 

points in space has been challenging and needs further 

investigations. One interesting area for spatial investigation and 

analysis in the forestry region and extraction of tree canopies 

and manmade buildings. 

While there are several approaches to investigate and 

explore information from these data points, the use of simple 

geostatistical algorithms together with existing central tendency 

measures can provide interesting spatial information. These 

measures of central tendency together with these morphometric 

attributes can be used for spatial approximation of the objects 

in the topographic landscape. Such spatial localization and 

structural estimates find their use in application areas such as 

target estimation from aircraft, landscape, and city planning, 

and developing micro-mobility support for cellular handovers. 

Traditional two-dimensional mapping solutions offer limited 

knowledge about the subject area and need higher dimensional 

treatments to uncover more precise facts. The geostatistical 

approach has well established itself on two-dimensional raster 

and other cartographic data. Extending them to data defined in 
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multidimensional space is challenging but has more 

significance.  

 

Some of the known methods to perform spatial 

analysis from geostatistics includes methods like Inverse 

Distance Weighted (IDW) and Kriging-based methods[1], [2], 

Spline approximations, Cluster and Grouping Analysis[3], 

Correlation and Regression analysis on spatial data. It can be a 

great tool for exploratory analysis for creating a spatial 

knowledge base and deriving meta-information for specific 

applications. Topographic data has several intrinsic information 

within it which can be explored using spatial analysis. This 

includes information related to forestry, hydrology, shape 

profiles, and other interesting aspects. In this paper, we explore 

the usefulness of geostatistical measures and methods for 

extracting spatial localization of geographical features 

including tree crowns, valley profiles, and, catchment areas. We 

apply simple geostatistical methods on the cluster of points in 

3D space which represents returns from geographic features 

and demonstrate how to explore useful spatial information from 

it. A hybrid approach involving 3D point processing and 

projection is used for precise visualization of the spatial 

distribution of spatial features. 

 

2. LITERATURE AND RELATED WORK 
Spatial analysis of topographic data relies on 

morphometric attributes and discrete point locations within it. 

The last two decades have seen a growing interest of 

researchers which has extended the spatial analysis from two-

dimensional image processing to higher-dimensional space. 

The scope of spatial image analysis including those for data 

obtained from laser scanning [4] and LiDAR sensors for 

applications in diverse areas has increased. Spatial analysis of 

natural landscapes, vegetation, and manmade structures 

provides an open opportunity for researchers. Ground [5] and 

non-ground [6], [7] classification is the first step in LiDAR 

Processing.  

Processing of airborne LiDAR for estimation of tree 

crowns discussed in [8] demonstrates the use of spatial 

investigation on natural and unstructured formations. It used the 

voxel-based technique to determine and approximate the 

density distribution of possible tree crowns in the given area. A 

similar application was discussed for the estimation of treetop 

and spatial localization of possible missing trees using a k-

nearest neighbor technique in [9]. It relied on computing the 

average of the k reconstructed height values of the trees having 

the most similar crown properties for the estimation. Besides, 

trees, the land parcel also contains man-made houses and 

buildings. Detection of buildings and rooftops have also equal 

importance in topographic analysis. 

Detection of tree crowns has been a key aspect of 

spatial analysis of topography. Tree detection in urban areas 

[10] highlights the usefulness of region growing approach for 

detecting objects. It requires to use of weighted SVM to control 

the misclassifications. While this method in its original form 

can detect and approximate the building structures, the 

performance is limited for natural objects such as trees. Voxel-

based method [8] is yet another approach for detecting surface 

objects by evaluating the density distribution. It highlighted that 

airborne LiDAR gives better estimates of tree crowns than 

terrestrial LiDAR samples. The approach of perspective density 

[4] can also be used to compute the crown volume for diverse 

types of trees. A more intuitive approach based on graph-based 

segmentation [11] can help to determine the topological 

structure and use the bottom-up approach for extracting the 

crown from the point cloud obtained from aerial sensors. 

Gaussian filter and energy function minimization-based 

approach [12] can be used when crowns obscure and overlap. If 

multispectral airborne LiDAR is available, then the mean 

shift segmentation method can be used. It can take the benefit 

of both spatial domain and multispectral domain to deal with 

the under segmentation of crown segments.  

Building and rooftop detection and segmentation are 

also an important part of point cloud classification, especially 

in urban regions. The segmentation-based approach [13] has 

been used in many commercial and free tools to identify 

rooftops and building structures. Euclidean distance-based 

segmentation is widely used for segmenting planar surfaces. 

[14] and [15] highlight the usefulness of Euclidean based 

clustering method and RANSAC algorithms for rooftop 

identification. The method used in [16] also highlights the use 

of a region-growing approach for detecting rooftops and can 

detect multiple buildings situated distance apart. 

Several attempts have been done to extract the non-

ground objects including tree crowns and buildings. When both 

trees and building structures coexist in the region, spatial 

analysis of the LiDAR returns for detecting and classifying 

trees and buildings becomes challenging. A hybrid approach to 

detecting the tree crown and rooftops can be used. Properties 

like slope variance, curvature continuity, height filters can be 

combined to achieve the required classification. This paper 

presents the single framework for classifying tree crowns and 

rooftops from the aerial LiDAR data set.  

 

3. DATA DESCRIPTION AND 

EXPERIMENTAL SETUP 

 
To discover the spatial distribution of points, an 

airborne point cloud describing the topographical region 

encompassing trees and artificial man-made structures from 

Wekiwa Springs State Park, Florida is used. The data sample 

stores the unstructured set of 291,725 points in 3D space as 

records of x, y, and z coordinates having horizontal coordinates: 

UTM z17 N NAD83 (CORS96) [EPSG: 26917] and vertical 

coordinates: NAVD88 (GEOID09) [EPSG: 5703]. Other 

attributes attached to the points include scan_angle, intensity, 

and return number, respectively. The data selection coordinates 

are Xmin: 451238.934, Xmax: 451469.419, Ymin: 

3176118.909 and Ymax: 3176358.703 respectively. The data 

set contain points in the defined region with 30m resolution and  

The selected region is defined by returns stored as a 

point cloud. Geospatial features such as small and large tree 

canopies are distributed over the region besides several man-
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made buildings/houses. The data set also contains returns from 

the ground including roads and water bodies. Clusters of points 

are likely to define the geo-objects such as tree canopy and 

rooftops based on point distribution in 3D space. The 3D aerial 

view of the regions is shown in Figure 1. The 3D visualization 

of the point cloud with elevation is shown in Figure 2. It gives 

the general idea of non-ground objects which need further 

processing for classification into tree ground points, crowns, 

and rooftops. 

 

Figure 1. Aerial View of Wekiwa Springs State Park, Florida 

 

 

Figure 2. Visualization of Point Cloud Data based on 

Elevation 

 

4. FRAMEWORK FOR SPATIAL ANALYSIS 

The experimental data used in this work comprises 

clusters of dense and sparse points returns obtained from the 

airborne LiDAR data. The data comprises returns from tree 

canopies, buildings, streets, lake regions, and open land. The 

framework for spatial analysis is divided into four stages. The 

general framework for the geostatistical analysis is shown in 

Figure 3. At the initial stages of processing, the system is 

provided with a set of surface point returns organized as point 

clouds. This point cloud undergoes classification into the set of 

points into ground and non-ground points. The set comprising 

of non-ground points denotes the surface objects and features 

including small plants, bushes, tree canopies, and rooftops. 

These non-ground points are further processed separately for 

detections of tree crowns and rooftops. 

Ground Point Classification 

The ground plane estimation is done based on a local greedy 

approach that uses a height-based filter [5], [17] and a 

multiscale curvature filter [18] to optimize the results. Points 

on the Ground plane are more likely to be distributed uniformly 

and thus can be evaluated as a grid with elevation at each 

location. A height filter 𝐻 ∈ 𝑅3 is applied to all points in the 

point cloud to filter out those points that are within the median 

height of the neighbor points and also show small curvature 

variations compared to their neighbors or points within the 

proximity. The height filter H is a constraint by the distance 

from the imaginary zero-plane where all elevation values are 

zero across the plane. This plane matches the minimum mean 

elevation from the dataset. The height filter evaluates the 

elevation at each (𝑖, 𝑗) and determines its possibility to be 

ground point together with curvature. Curvature is computed at 

point 𝑝𝑖𝑗  and a tolerance threshold 𝑡𝜃  is augmented to it. If the 

curvature is within the threshold limit, then the point is the 

possible candidate for the ground plane.   

 

Figure 3. Framework for Analyzing Unstructured Point Cloud 

The use of the median eliminates the outlier points and thus 

overcomes the problem of incorrect classification. The 

estimated plane further computes the orthogonal distance and 

minimizes it using principal component analysis. For a point 𝑝𝑖𝑗 

with height 𝑧𝑖𝑗, the normal n, it is computed as 

𝑑 = 𝑚𝑖𝑛 ∑ ((𝑝𝑖𝑗 − 𝑝̅) ∙ 𝑛)
2

𝑁
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where, 𝑛 ∈ 𝑅3  is the normal vector and the 𝑧 component of the 

normal is used to compute relatively flat ground surface. The z 

component is computed as 𝑛 ∙ (0,0,1). The points that do not 

satisfy the height variance and curvature tolerance are classified 

as non-ground points. The surface is then interpolated using a 

thin-plate spline for ground plane approximation. The dual 

conditions of median height and curvature keep the ground 

plane estimate more controlled and exhibit surface continuity. 

Optionally, the streets and roads can be determined by a set of 

connected points that have the same elevation and exhibit 

uniform returns with no or minimal height variation. 

 

Non-ground Classification 

The non-ground points obtained as a result of the above process 

is further processed for detecting tree crown and rooftops. Tree 

crowns denote the points that are dense but exhibit random and 

high variations in height. Rooftops on the other hand are 

relatively flat and thus height variation in the rooftop points will 

be minimal. The variations in height values if any will be 

contiguous and gradual in some direction. 

 

As a next step, the rooftops are estimated. To estimate the 

rooftops, the point cloud is projected to obtain a 2D grid of 

height maps. Two criteria that help to classify rooftops include 

the gradient change in height across the surface and contour. 

The rooftop height will be continuous in slope with small 

variance and maintain spatial continuity. The rooftop is found 

to have similar normal across the surface. The points on the 

rooftop surface are computed by computing the orthogonal 

regression and fitting them to each point within k-neighbors. 

The standard deviation across the surface should be small for 

good orthogonal fitting and hence it is used to verify the planar 

structure of the rooftop. The set of identified points is associated 

with the rooftop. The contour is by computing the centroid of 

the cluster and computing the farthest point in the cluster inside 

out in all radial directions. A close shape approximation 

requires more points on the contour and hence small increments 

are desired. Final contour approximation is done by 

interpolating the points using the spline function for a closed 

figure. 

 

Once the rooftops are classified, the rest of the points are 

processed in three-dimensional space. To detect the crown, we 

use the region growing algorithm [19] for determining the 

members of the tree crown. The crown radius is empirically 

determined through curvature continuity.  The seed points are 

determined and points are classified to belong to the tree crown 

controlled by the search radius and nearest neighbor described 

by the region growing algorithm. The results can be further 

improved using a hybrid approach that used region growing and 

additionally used valley profiles to segment adjacent tree 

crowns. This is needed especially when tree crowns penetrate 

or shadow the other crown. The region of steep change in the 

curvature helps to segment the crown adjacent to each other. 

Morphology-based detection of valley profiles[20] was used to 

find the discontinuities between overlapping crowns and used 

to detect the contour profile for the tree crowns. Those points 

that are neither classified as ground plane nor surface objects 

are treated as noise and removed. 

 

As a next step, the classified points are augmented with color 

attributes. All ground points are associated with a single color 

and non-ground objects like trees crowns and building rooftops 

with a distinct color. Each of these classified points helps in the 

segmentation of the surface features and thereby allows 

processing them independently. Further, for better 

visualization, progressive color mapping is done on the points 

in each class with height and curvature. This can be rendered in 

3D space and enables interactive visualization from different 

perspectives. Finally, the segmented and classified points are 

projected onto a two-dimensional intensity map for use with 

cartographic applications and generating topo sheets. 

 

5. OBSERVATIONS AND DISCUSSIONS 

The point cloud is processed using the proposed hybrid 

framework. The points are segmented into 1,66,798 ground and 

1,24,927 non-ground points respectively. Ground points are 

interpolated to fill the region with sparse points. The non-

ground points are further processed to segment rooftops and 

tree crowns. The spatial distribution of identified tree counts 

and the crown diameter is shown in Figure 4. The observation 

suggests that the height of the majority of the trees is between 

3m and 8m. 

 

Figure. 4.  Tree Crown Spatial Distribution 

 
Figure 5. Performance of Spatial Clustering 
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The performance of classification and segmentation is noted for 

Region-growing (RG) based segmentation and also after 

additionally using Region-growing with valley(RGV) point 

contour estimation. Both results are compared to Euclidean-

based clustering results. It is found that while the region 

growing-based approach gives good results, the segmentation 

result is further improved by adding valley estimation in RG 

method when applied to unstructured points. The results show 

higher performance especially for estimating tree crown.  The 

performance of segmentation is shown in Figure 5. The results 

of applying the framework for extracting tree crowns and 

rooftops are shown in Figure 6. The spatial approximation of 

the rooftop and building structure is shown in Figure 6a and 

Figure 6b respectively. Segmented tree crowns are shown in 

Figure 6c. Tree crowns are segmented and shown in Figure 6b. 

Overlay visualization of tree crown and rooftops are visualized 

in Figure 6d and Figure 6d and Figure 6f respectively. Figure 

6f shows the spatial visualization with color mapping for visual 

understanding and discrimination. Streets are also identified 

and visualized as contact green shade on the classified ground 

points. 

 

The performance of the framework in analyzing and 

spatially detecting surface objects are presented in Table 1. The 

true positive rate (TPR) and True Negative Rate(TNR) are close 

to 99%. The overall accuracy percentage is also between 98.85 

and 99.0. The F score for the obtained result is close to 98.7%. 

The Precision or Positive Predictive Value is between 98.7 and 

99.2 percent. 

 
Table 1: Classification Performance (%) 

Score Roof Top Tree Crown Other 

Objects 

TPR 0.990 0.984 0.990 

TNR 0.983 0.985 0.989 

PPV 0.987 0.989 0.992 

ACC 0.987 0.985 0.990 

 

 

6. CONCLUSION 

In this work, a framework for multiclass classification and 

segmentation from unstructured point cloud data is 

implemented. Multiobject detection is obtained using region-

growing and implementing height filters. The use of valley 

point detection improves the segmentation process 

significantly. The use of curvature continuity helps to determine 

the tree cron envelop and thus determines the diameter and also 

discriminates one from the other. The height filter with a slow 

varying slope is found useful for detecting ground points but for 

detecting tree crowns, curvature continuity is important. 

Overall accuracy close to 98.7% is obtained from surface 

objects. The spatial analysis from the point cloud gives better 

visualization of surface features and interactions. The 

framework can be further extended to determine the volume of 

the crown and spatial occupancy in the given region.  

  
                 (a) Roof Top Detection                                 (b) Tree Crown Clutter Extraction         (c) DEM visualization of Roof Tops.                      

    
(d) Overlapped Roof Top and Tree Crowns                  (e) 2D Georeferenced Intensity Map             (f) 3D Progressive Color based Plot 

Figure 6.  Tree Crown and Building Extraction from Unstructured Point Cloud 
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