
 

 

          

 
 

©2012-20 International Journal of Information Technology and Electrical Engineering 

69 
ITEE, 9 (3) pp.69 -76, JUN 2020 Int. j. inf. technol. electr. eng 

ITEE Journal 
Information Technology & Electrical Engineering 

 

ISSN: - 2306-708X 

 

Volume 9, Issue 3 
June 2020 

    Non-Linear Modeling and Control of Quadrotor 

 
1
Swabira B Hamza,

 2 
Mathew  P Abraham, 

3 
Farsana Muhammed 

1Department of Electrical  and Electronics Engineering, TKMCE, Kollam 

2Department of Electrical and Electronics Engineering, TKMCE, Kollam 

3Department of Electrical and Electronics Engineering, TKMCE, Kollam 

E-mail:  1swabirabhamza1@gmail.com, 2 mathew@tkmce.ac.in, 3farsanamuhammed217@gmail.com 

 

ABSTRACT 
 

Quadrotor, one of the most popular form of civil UAV which exists in various sizes and prices. A mathematical model and 

control of such a UAV is described in this paper. It introduces a mathematical model obtained by using Newton-Euler equations. 

A six degrees of freedom model is elaborated starting from the general equation until the state-space form, along with 

linearization assumptions. The controller part consist of obtaining the best control strategy to stabilize the system based on PID 

control. The full dynamic model of the quadrotor is considered for designing the controllers and the simulations are done and 

analyzed in MATLAB-SIMULINK.  
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1.  INTRODUCTION 
 

 Quadrotor, also called as a quadcopter is becoming 

popular in the civil and military applications due to their 

vertical takeoff and landing (VTOL) capability and safer to 

interact. These type of vehicles is being used in various areas 

including surveillance, border patrol, disaster management, 

photography etc. For these advantages, quadrotors have 

received much more interest in UAV research. It is a four 

propeller helicopter. The basic motions of this type of vehicles 

are generated by varying the rotor velocities of all four rotors, 

thus by changing the thrust moments. The quadrotor tilts 

towards the direction of low lift rotor, which accelerates along 

that direction. Spinning directions of the rotors are set to 

balance the moments. This is also used to produce the desired 

yaw motions. 

  The quadrotor considered here, is an under-actuated 

system with only four inputs and six outputs. Hence the states 

are highly coupled. To deal with such a system, many 

modeling approaches have been presented and various control 

methods are proposed. The Proportional- Integral-Derivative 

(PID) controller is used for the attitude control of a quadrotor 

which is dealt with [1]. The idea of an independent control 

action for the variables of the attitude control is shown. A 

similar decoupled control law is used in [2], here the 

gyroscopic effects are neglected and rotor dynamics are 

included then designed the PID controllers. Then a Linear 

Quadratic Regulator (LQR) control is compared with, and for 

the system which is linearized around each of the state to 

accommodate a wider flight motion. The similar linearization 

method has been used in [3], in which full control of quadrotor 

employing the LQR technique, after using model linearization 

using small angle approximation and then giving the 

equilibrium conditions. In the nonlinear techniques, feedback 

linearization control (FBL) is one of the methods mostly seen 

in literatures. Two methods for the quadrotor control using 

feedback linearization are dealt in [3]. A similar extended 

system is shown in [4] where the repeated differentiation is 

performed and then applied the small angle approximations. 

Feedback linearization technique by dynamic inversion 

for the control of trajectory tracking is given in [5]. Separate 

laws are used for rotational and translational dynamics after 

repeated differentiation is used. It is followed by a linear 

auxiliary control input to stabilize the error dynamics. A 

similar technique is used for the control of attitude dynamics 

in [6], with these attitudes are chosen in the outputs. Through 

small angle approximation for the attitude variables, the 

matrix to be inverted is obtained directly from the dynamics. 

The obtaining linearized model can be controllable using any 

of the standard techniques like PID or back stepping 

controller. 

An analysis between PID controller, inverse control, 

sliding mode control and back-stepping control is dealt in [7].  

Upon the total error criterion for evaluation of the 

performance, the best controller be proved as the sliding mode 

controller. A detailed comparison between feedback 

linearization control and sliding mode control is performed in 

[4]. 

Our study presents two controllers for a quadrotor system. 

The first one is a PID controller for the linearized model the 

vehicle. A PID controller calculates the difference between a 

set point and a desired set point in the process as an “error” 

value. The controller tries to reach the set point by 

downloading the minimum value of the error. The control 

output is passed through three separate mathematical 

operations and is obtained by summing. The second one 

operates on a feedback linearization (FL) technique for an 

integrated X-Y- Z control. Feedback linearization controllers 

can be directly applied to nonlinear dynamics without linear 

approximations. We simplify the equation of system dynamics 

for the FL controller in order to avoid complex calculations 

involving repeated differentiation. Although this controller is 
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simple to implement, model uncertainty can cause 

performance degradation or instability of the closed loop 

system, the FL controller is quite sensitive to external 

disturbance or sensor noise. 

Compared to the previously cited works here both the 

nonlinear and linear model of the quadrotor is considered for 

control purpose under the feedback linearization and PID 

control schemes respectively. It can be seen that the linearized 

model is obtained only through huge approximations of some 

terms which may affect the performance of the system. Hence 

a nonlinear controlling scheme which is the feedback 

linearization control is proposed and its simulation part is 

considered in our future work. 

The rest of the paper is organized as followed: Section 2 

presents the dynamics of the quadrotor. Section 3 introduces 

suitable controllers for assuring a stable and optimal system. 

Section 4 shows the simulation results on the quadrotor. 

Finally, Section 5 summarizes findings of work to improve the 

capabilities of the quadrotor. 

 

2. MATHEMATICAL MODELING 
 

Quadrotor is an under-actuated system because it has six 

degrees of freedom but only four actual inputs. The six 

degrees of freedom includes translational motion in three 

directions (X,Y,Z) and rotational motion around three axes 

        . The schematic configuration of a quadrotor is 

shown in Fig. 1. Four rotors, each of which is driven by a 

motor are mounted at two orthogonal directions and rotates in 

a direction as the circular arrow does. In the Fig. 1,     is the 

thrust moment produced by the rotor i. To mathematically 

illustrate the dynamics of the quadrotor, a co-ordinate system 

should be defined. The co-ordinate system can be divided into 

an earth frame {E} and a body frame {B}. The body frame 

which is represented by {B} with its origin at the center of 

mass and earth frame which is represented by {E} are as 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rotors (1,3) and rotors (2,4), are the two rotor pairs which 

rotate in opposite directions so that the moment produced by 

them cancel each other. A roll angle   , along the X-axis of 

the body frame, can be obtained through increasing the 

angular velocity of rotor (2) and decreasing that of rotor (4) 

while keeping the total thrust constant. Alike increasing the 

angular velocity of rotor (3) and decreasing that of rotor (1) to 

produce a pitch angle ( ), along the Y -axis of the body frame. 

In order to perform yawing motion( ), along the Z-axis of the 

body frame, the angular velocity of (1,3) are increased and 

that of (2,4) are decreased. 

 

The equations describing the dynamics of a quadrotor are 

basically those of a rotating rigid body which can be derived 

with Newton-Euler formalism. The complicated motions of a 

quadrotor can be described by two typical groups of equations 

each of which represents a subsystem with coupled terms. The 

first group is related to the translational positions and the 

second group related to the rotational angles. 

Deriving mathematical modeling or differential 

equations is necessary for the control of the quad-rotor 

position (X,Y ), altitude (Z), attitude (    ) and heading(  ). 

However, it is hard for the complicated structure of the 

quadrotor to express Fig. 1. A quadrotor helicopter 

configuration [8] its motion with only a simple modeling. In 

addition, since the quadrotor UAV includes highly non-linear 

factors, we need to consider several assumptions in order to 

get a desired model 

1) The body is rigid and symmetrical. 

2) The rotors are rigid, i.e. no blade flapping occurs. 

3) The difference of gravity by altitude or the spin of the 

Earth is minor. 

4) The center of mass and body frame origin coincide. 

These assumptions can be formed because of slower 

speed and lower altitude of the quadrotor  UAV as compared 

to a regular aircraft. Under these assumptions, it is possible to 

describe the fuselage dynamics. As already mentioned, to 

mathematically illustrate the fuselage dynamics of the 

quadrotor UAV, a co-ordinate system should be needed. 

The rotational transformation matrix between the 

earth frame and the body frame can be obtained based on 

Euler angles (      ). These are three angle introduced to 

describe the orientation of a rigid body. To describe such an 

orientation in the 3-D Euclidian space, three parameters are 

required. They can be given in several ways, here ZYX Euler 

angles are used. The Euler angles represent a sequence of 

three elemental rotations. i.e., rotations about the axes of a co-

ordinate system. The orientation combination used is 

described by the following rotation matrices: 

 

 

 

 

 

 

 

 

 

 

 

 

where c and s indicate the trigonometric cosine and sine 

functions respectively. So the rotational transformation matrix 

between the earth frame and the body frame is given by the 

following equation: 

 

                                                                                           (1)            

                                                                                                                                                                          

Fig. 1. A quadrotor helicopter configuration 

[8] 
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Where,                                                                                                        

 

 

                                                                                     

(2) 

 

 

 

 

Thus here we obtained the rotational matrix        that 

converts between body frame and earth frame. Now we give 

the non-linear model of a quadrotor. 

 

 

A. Non-linear Model 

 

The goal of this section is to obtain a deeper understanding of 

the dynamics of the quadrotor and to provide a model that is 

sufficiently reliable for simulating and controlling its 

behavior. Let us call               , the vector containing the 

linear and angular position of the quadrotor in the earth frame 

and                , the vector containing linear and angular 

velocities in the two frames. The transformation of velocities 

between the earth frame and body frame can be derived from, 

 

 

 

                                                                                   (3) 

 

                                                                                                                                                                          

where   ;    and    are the translational velocities in the 

body frame. Similarly, positions, forces, moments, 

accelerations and rotational velocities can be transformed 

based on         between co-ordinate systems. In the body 

frame, the forces are presented as, 

 

 

                                                                                          (4) 

 

 

where    (i = 1; 2; 3; 4) is the thrust moment produced by the 

rotor i .It is defined by, 

 

 

 

where b is a positive constant that denotes the thrust factor of 

propeller and    is the angular velocity of the motor i. 

Accordingly, in the earth frame, the forces can be defined as, 

 

 

 

                                                                                               

(5) 

 

 

 

Therefore, equations of motion in the earth frame for the 

translational dynamics (X, Y, Z) are derived by the Newton’s 

laws, 

 

 

 

                                                                                             (6) 

 

 

 

Where m is the mass of the quadrotor and g the acceleration 

due to gravity. By extending the Newton’s law on rotational 

dynamics       ) , its equation can be written as, 
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Where l is the distance from the center of rotors to the 

quadrotor center of mass. d indicate drag coefficient.       ;    

are moments of inertia of the quadrotor. As a consequence, the 

complete dynamic model which governs the quadrotor is as 

follows: 
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where   (i = 1; 2; 3; 4) are control inputs of the model, 

 

 

 

 

 

                                                                                         (10) 

 

 

 

Equation (10) describes the thrust moments acting on 

quadrotor as shown in Fig. 1.The total thrust developed by the 

four rotors is given   , the rolling and pitching moments occur 

due to the difference in thrust produced by the opposing rotors 

is given by    and   . Yawing moment is caused by the drag 

force acting on all the propellers and opposing their rotation 

which is given by   . By using (8) and (9), a compact non-

linear model of the quadrotor is given as, 

 

 

 

Where                     ̇  ̇  ̇    ̇   ̇   ̇   .are the state 

variables, f(X) and g(X) are smooth functions on X. 

Equivalently using  ̅ =                and                 
  

, in the vector form as, 

                                                                                     (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence we obtained the non-linear model of a quadrotor as the 

above equations. The linearized model of the quadrotor is 

discussing in the next part. 

 

B. Linearized Model 

 

This section deals with the linearized model of the quadrotor. 

Set U the control vector,                   
 and defining the 

state vectors as,                    ̇  ̇  ̇    ̇   ̇   ̇   . 

The linearizations procedure is developed around an 

equilibrium point  ̅, which for a fixed input  ̅ is the solution 

of the algebraic system: or rather that value of states vector, 

which on fixed constant input is the solution of algebraic 

system: 

 

 

 

since the function f is nonlinear, problems related to the 

existence an uniqueness of the solution of system arise. In 

particular, for the system in hand, the solution is difficult to 

find in closed form because of trigonometric functions related 

each other in no-elementary way. For this reason, the 

linearization is performed on a simplified model called to 

small oscillations. This simplification is made by 

approximating the sine function with its argument and the 

cosine function with unity. The approximation is valid if the 

argument is small. The resulting system can be as, 

 

 

Inorder to perform the 

linearization, an equilibrium point is needed. Such an 

equilibrium point can be, 

 

 

 

from the equations (8) and (9) we can find that the equilibrium 

point is obtained by constant input value, 

 

 

 

After determining the equilibrium point and the corresponding 

nominal input, we have that the matrices associated to the 

linear system are given by the relations: 
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Thus we obtained the linearized model of the quadrotor as the 

above equation. The next section deals with the control part of 

the quadrotor. 

 

 

3. CONTROL DESIGN 
 

This section discuss with the control part of the quadrotor. A 

PID controller for the linearized model is discussing and also 

the feedback linearization control theory is included for the 

non-linear model. 

 

A. PID Control for the linearized model 

 

PID is a control mechanism used in common industrial control 

systems. It is also widely used in quadrotor control. A PID 

controller calculates the difference between a set point and a 

desired set point in the process as an ”error” value. The 

controller tries to reach the set point by downloading the 

minimum value of the error. The control output is passed 

through three separate mathematical operations and is 

obtained by summing. System effects are as follows. 

Proportional Effect (P): Effective as the output multiplied by a 

certain ”gain” value of the error, calculates the current error. 

Integral Effect (I): The effect of the control is proportional to 

the sum of all the errors in the moment up to the moment the 

effect is calculated. In other words, the integral effect means 

the sum of errors the system has made in the past. Derivative 

Effect (D): It has a proportional effect on the output of the 

system, according to the change of the error. So it calculates 

the prediction of the future error. Karl Arstom defines this 

algorithm which has a wide application area as follows: 

 

 

                                                                                             

(16) 

 

 

Where,    proportional coefficient,    integral coefficient and 

   is the derivative coefficient. 

The PID controller block diagram is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PID controller for the quadrotor is developed based on the 

fast response. One aspect of the controller selection depends 

on the method of control of the quadrotor. It can be mode 

based or non-mode based. For the mode based controller, 

independent controllers for each state are needed, and a higher 

level controller decides how these interact. On the other hand 

for a non-mode based controller, a single controller controls 

all of the states together. However the adopted control strategy 

is summarized in the control of two subsystems; the first 

relates to the position control while the second is that of the 

attitude control. The quadrotor model above can be divided 

into two  subsystems: A fully-actuated subsystem S1 that 

provides the dynamics of the vertical position (Z) and the yaw 

angle ( ), 

 

                                                                                            (17) 

 

 

A subsystem S2 representing the under-actuated subsystem 

which gives the dynamic relation of the horizontal positions 

(X; Y ) with the pitch and roll angles     _) , 

 

 

 

                                                                                           

(18) 
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The PID control is applied to the equations above with inputs 

u1; u2; u3; u4 and outputs        and X, Y,Z. Though these 

methods were rather successful in local analysis of nonlinear 

systems affine in control they usually fail to work  for a global 

analysis. For the fully-actuated subsystem we can construct a 

rate bounded PID controllers to move states X; Y;Z and 

      to their desired values. Next is a nonlinear technique 

used for quadrotor control called feedback linearization. 

 

B. Feedback linearization control for the nonlinear model 

 

The technique is based on the construction of a nonlinear 

inverse dynamic controller for a system of the form: 

 

 

                                                                                 (20) 

 

 

where f(X) and g(X) are vector fields in    , U is the input 

and Y is the output. The control design process is to find an 

integer      and a state feedback, 

 

                                                                           (21) 

 

where V is a new control variable,     and     are smooth 

functions defined in a neighborhood of some point         

such that the closed loop system has the property that the  th 

order derivative of the output is given by 

 

Fig. 2. PID controller block diagram - Quadrotor complete 
system 



 

 

          

 
 

©2012-20 International Journal of Information Technology and Electrical Engineering 

74 
ITEE, 9 (3) pp.69 -76, JUN 2020 Int. j. inf. technol. electr. eng 

ITEE Journal 
Information Technology & Electrical Engineering 

 

ISSN: - 2306-708X 

 

Volume 9, Issue 3 
June 2020 

 

                                                                               (22) 

 

where     is an open interval containing t = 0. This problem is 

termed as (local) input-output feedback linearization. The 

point around which the linearization is performed is called the 

analysis point. 

The quadrotor under consideration is an under-actuated 

system, and g(X) in (20) is not invertible. So the non-linear 

terms in (20) cannot be directly canceled by inverting g(X). To 

make this system feedback linearizable, one may consider 

choosing        and Z as output variables. If X; Y;Z and are 

chosen as output variables, it can be easily seen that u2 and u3 

do not appear in (8) and last equation of (9), so we need to 

differentiate these equations until the input terms appear. 

Because of the repeated differentiation, the FL controller 

design involves complex computation and several derivative 

terms that are quite sensitive to noise. In order to reduce the 

number of complicated derivative terms involved in further 

differentiations of X and Y , we first approximate (8) and last 

equation of (9) using the small angle assumptions. The 

quadrotor output dynamics can be placed in state space form 

as follows: 

 

 

 

                                                                                          (23) 

 

 

 

note that the matrix multiplying the control                 is 

singular which implies that there is no static state feedback 

that will linearize. In this case we must use dynamic inversion 

and this can be achieved by dynamic extension or simply by 

placing two integrator before ul input. Thus differentiating 

equation (8) two more times we obtain the following output 

dynamics for the quadrotor 

 

 

                                                                                           

(24) 

 

 

where f’s and g’s are complicated nonlinear functions of state 

and their derivatives. The dynamic state feedback law that 

linearize and decouple the quadrotor outputs can be calculated 

as follows: 

                                                                                          

(25) 

 

 

 

 

where   ;   ;    and    are new control inputs such that 

resulting closed loop system is in the form: 

 

 

 

                                                                                     (26) 

 

 

 

The control law fully linearize the quadrotor dynamics 

described by equations and leave no unobservable zero 

dynamics. The inverse of the decoupling matrix in is non 

singular as along as the,   is nonzero. This fact agrees well 

with the intuition that no amount of rolling or pitching will 

effect the motion of the quadrotor aircraft if there is no thrust 

to effect the acceleration. The simulation part of this control 

scheme is planning to be included as a part of our future work. 

4. SIMULATION RESULTS 

 
The proposed PID controller is tested on the dynamic model 

developed in the SIMULINK environment and is shown in 

Fig. 3 . 

 

 

 

 

 

 

The nominal parameters and the initial conditions of the 

quadrotor for simulation are: 

   =    = 1:25N  /rad: 

   = 2:5N  /rad: 

m = 2kg: 

l = 0:2m: 

g = 9:8m  : 

The values of the PID controller gains are as shown in Table I,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the step 

response of 

Fig. 3. PID controller simulink diagram - Quadrotor 
complete system 

TABLE I 
GAIN VALUES FOR PID CONTROLLER 
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position and attitude of the designed  controller are shown in 

Fig. 4 to Fig. 9. Positions X; Y;Z followed by the roll angle, 

pitch angle and yaw angle. The desired attitude commands are 

provided from a block, which contains step functions for each 

of the variables. The step function starts with an initial 

condition of 10 deg for the three angles and 5 m for height and 

falls to 0 deg for the angles and 3 m for the height with a step 

time of 5 s. 

The simulation results show that the PID controllers are able 

to robustly stabilize the quadrotor helicopter. From Fig. 4 it 

can be seen that the PID controller step response for position -

X which tracks the given value at the step time of 5 s. 

Similarly Fig. 5 shows the PID controller step response of 

position -Y , which also tracks the given value of step at the 

step time of 5 s. From Fig. 6 it can be seen that PID controller 

step response of the altitude or the position- Z tracks a value 

of 50 m at the step time of 5 s. That means all the three 

positions moves to the desired position values while Fig. 7 and 

Fig. 8 shows that the PID controller step response for the roll 

and the pitch angles are zero. Also Fig. 9 shows the PID 

controller step response for the yaw angle. It can be seen that 

the yaw angle tracks the given value of step at 5 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through using the proposed PID controller method strategy, 

good performance can be shown from the speed of response of 

the quadrotor. 

 

5. CONCLUSION 

 
In this work the mathematical model of a quadrotor (both 

linear and non-linear models) was obtained and simulated 

using two controllers in MATLAB-SIMULINK environment. 

It is found that the applied PID controller for the linearized 

model control the system properly and also the feedback 

linearization controller controls the non-linear model. That 

means the proposed control schemes has been successfully 

applied to the fully autonomous quadrotor system. 

 

Fig. 4. PID controller step response for position-X 

Fig. 5. PID controller step response for position-Y 

Fig. 6. PID controller step response for position -Z 

Fig. 7. PID controller step response for angle   

Fig. 8. PID controller step response for angle   
Fig. 9. PID controller step response for angle   
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