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ABSTRACT 
 

Target tracking is an important element that is present in many applications in science including collision avoidance, surveillance, 

positioning, object detection, etc. Many scientists for decades have been developing new and new algorithms to solve problems 

related to target tracking. In general, the prime objective of any target tracking problem is to find/estimate the state variables of 

the associated system as fast as possible at the same time with minimum variance. Particle Filter is considered as the most standard 

method used to solve such problems. The curse of dimensionality has made scientists utilize the system properties and design 

some special estimation filters like Marginalized Particle Filter. The Marginalized Particle filter is not only free from the curse of 

dimensionality but is also faster than the standard Particle Filter. With the development of new technologies, the computational 
power has also improved but still, estimation speed is an important parameter when it comes to target tracking problems especially 

in application related to tracking missiles, enemy aircraft, etc. Adaptive Marginalized Particle Filter is an improved filter which 

yields estimates faster by utilizing the variable nature of the noise present in the system. In this paper, the performance of Adaptive 

Marginalized Particle Filter will be studied compared to Particle Filter and Marginalized Particle Filter by doing simulation using 

MATLAB by taking a target tracking application. Simulation datasets will be generated using a 2D constant acceleration model. 

From the simulation, it will be clearly understood that the Adaptive Marginalized Particle Filter is much better than the 

conventional filters in terms of estimation speed and variance of estimates. 
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1.  INTRODUCTION 
 

 Target tracking is one of the many applications in 

science that has been fascinating to scientists for many decades. 

The idea of state estimation has marked a new era in solving 

such problems. Target tracking is considered a prime element 

when it comes to many applications in science such as collision 

avoidance, surveillance, positioning, object detection, etc. State 

estimation is an art of evaluating the variable of interest using a 

set of noisy, indirect measurements. In the case of a target 
tracking application, the variable of interest includes the states 

that represent a moving target.  

       A typical state estimation technique comprises of two 

models namely the state transition model and measurement 

model [1], [2], which will be used to represent the problem. The 

state transition model gives the relation between the various 

states associated with the system and how it varies with respect 

to time. Most of the time, a direct measurement of state 

variables may not possible due to constraints related to sensors, 

environment, etc. however the measurement of some indirect 

variables may be possible. Measurement model gives the 
relation between the measured data and the actual state 

variables describing the system.  

In target tracking, the estimation technique can be 

considered effective if, it can find the estimates faster, with 

minimum variance, and track even in a highly noisy 

environment. The performance of state estimation techniques 
depends on several factors including, the credibility of the 

model (state transition and measurement models), noise levels 

of the measurements, etc. Emphasis should be given while 

selecting the model which will represent the problem as 

accurately as possible. No matter how much effort is given in 

designing the state estimation technique, if the model cannot 

accurately represent the problem then the overall performance 

of the estimation will be mediocre. In addition to the quality of 

the models, another important parameter is related to the ability 

of the state estimation technique in the retrieval of useful 

information from the noisy measurements. 

There are a wide variety of state estimation filters which 
can be used to solve target tracking applications. The selection 

of filters is determined based on the characteristics of the model 

and the noise associated with it. Kalman Filter (KF) [3],[4] is 

considered to be the optimal state estimation technique due to 

its ability to find the estimates with minimum variance possible. 

KF is applicable only when the model has linear characteristics 

and the noises can be approximated to Gaussian. In such a 

situation no other filter can perform better than KF.  

mailto:saniljayamohan@gmail.com
mailto:santhiram@yahoo.com
mailto:jinjujoy1@gmail.com


 

 

          

 
 

©2012-20 International Journal of Information Technology and Electrical Engineering 

ITEE, 9 (3) pp. 105-111, JUN 2020                                                Int. j. inf. technol. electr. eng. 

106 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 9, Issue 3     
June 2020                                                                                                  

Practical tracking problems can be seldom considered to 

possess a linear model. Process model (State transition) and 

measurement model or either process model or measurement 

model may be nonlinear and hence in such a practical situation, 

KF cannot be utilized in the estimation process. To tactical 

solve such a situation several different versions of KF have 

been developed. Extended Kalman Filter (EKF) is a modified 
version of KF which can be applied in the case of nonlinear 

models. EKF achieve estimation using the concept of 

linearization. However, larger nonlinearities can lead to filter 

divergence. Unscented Kalman Filter (UKF), is another version 

of KF which can be used to solve target tracking problems and 

yield satisfactory performance whenever the nonlinearities are 

comparably small.  

When Gaussian approximation, linearization techniques 

results in mediocre estimation performance, another category 

of state estimation technique such as Sequential Monte Carlo 

methods (SMC) also known as Particle Filter (PF) [5], [6] are 
made use of. In PF, state estimation is achieved by evaluating 

aposterior probability density function (pdf) at each stage and 

propagating whenever a new measurement data comes. 

In the case of PF, the aposterior distribution is represented 

using a set of a weighted samples known as particles. Here the 

weight associated with each particle is a clear indication of the 

quality of the data that is been represented by the particle, i.e if 

the weight is zero then the information represented by that 

particle will be of no use when compared to a particle with a 

certain weight. The accuracy of the representation of the 

aposterior distribution depends on the number of particles used 

to represent the distribution, more the number of particles, 
better the representation. The curse of dimensionality is the 

major drawback when it comes to PF, which is nothing but, 

more the number of particles more will be the computation 

complexity of PF which will increase drastically depending on 

the dimension of that state variables. 

Thus, PF will be an effective state estimation technique for 

solving the target tracking problem when the dimension of the 

state variables is less. PF can be considered as the general filter 

that can be applied to any problems with linear or nonlinear 

models and with any type of noise. There is another problem 

that affects the estimation process, namely degeneracy. 
Degeneracy can be thought of as a situation in which after few 

iterations the weight of some of the particles will reduce to zero 

thereby making them ineffective in the estimation process. If 

this problem is not addressed, it can lead to filter divergence. A 

computationally complex technique known as Resampling [7]–

[9] can be incorporated along with PF to solve the problem of 

degeneracy. But this will further increase the computational 

complexity of the PF. If some relaxation can be given to noise 

affecting the system, which can be approximated to Gaussian, 

then a modified version known as Gaussian Particle Filter 

(GPF) [10], [11] can be used. GPF yields performance similar 

to that of PF but with lesser computation complexity being 
limited to Gaussian Noise.  

As mentioned in the starting section of the paper, 

representation of the system using an appropriate system and 

measurement model is a very important step in solving target 

tracking problems using state estimation techniques. Upon 

studying the models that are generally associated with problems 

related to target tracking, it can be brought to the notice that in 

most situations, the model associated with the problem is 

characterized by a linear system model, nonlinear measurement 

model and the noise associated with the system will be 

Gaussian. This allowed scientists to develop a new class of 

estimation filter specially designed for problems [12]–[14] 

having models with linear Gaussian substructure.  

Marginalized Particle Filter (MPF) [15]–[17] has been 
developed to solve models with linear Gaussian substructure in 

which the state variables will be marginalized out into two state 

vectors. One state vector constitutes the linear state variables 

and other nonlinear state variables. Once marginalization is 

done, the linear state variables will be estimated using KF, and 

the estimation of nonlinear state variables will be carried out 

using PF. The main advantage of such type of approach is that 

the dimension of state variables which is estimated using PF 

will be reduced and hence the overall computational complexity 

decreases and hence estimation of states using MPF can be 

achieved much faster than using standard Particle Filter and 
results in estimates with lesser variance [18], [19]. 

The state estimation techniques discussed so far depends 

on the type of system model. Noise affecting the measurements 

is another important parameter that affects the performance of 

the estimation process. In Science, noise is considered random 

which means its occurrence cannot be deterministically 

mentioned. Thus, in practical scenarios, the amount of noise 

affecting the measurement data will keep on varying, at times 

having less value and at other times having larger value. MPF 

and PF are designed to operate with a constant number of 

particles without considering the amount of noise affecting the 

measurements. As MPF is much better than PF and can 
withstand noise much better as discussed and explained in [18], 

a new type of state estimation filter by taking into consideration 

this varying nature of the noise known as Adaptive 

Marginalized Particle Filter (AMPF) [20] is developed.  

Adaptive Marginalized Particle Filter is an improved 

version of MPF which adapts the number of particles depending 

upon the amount of noise affecting the measurement data. 

AMPF being an improved version of MPF obtain estimates 

much faster and even better variance at times. Similar to MPF, 

in AMPF also linear state variables will be estimated using KF 

and nonlinear state variables will be estimated using PF. The 
basic idea and formulation of AMPF will be briefed in the 

upcoming sections. This paper is written to demonstrate how 

Adaptive Marginalized Particle Filter can be applied in the case 

of a typical target tracking problem. All the simulation is done 

using MATLAB running in 8GB Ram, i7 Intel Processor 

computer. From the simulation, it will be clear the performance 

excellence of AMPF compared to MPF and PF in terms of Root 

Mean Square Error (RMSE) and execution speed. 

Section 2 gives the details of the important special class of 

model that is commonly found in applications such as collision 

avoidance, target tracking, positioning, surveillance, object 

detection, etc. AMPF algorithm employed for target tracking 
applications is discussed in Section 3. Section 4 gives the 

typical target tracking example used for the simulation and the 

results are mentioned in Section 5. Finally, the conclusion and 

remarks are discussed in Section 6. 
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2. IMPORTANT SPECIAL DYNAMIC STATE 

SPACE MODEL 
 

The special class of dynamic state space model which is 

commonly utilized in the case of target tracking applications 

consists of linear state equations and measurement equations 

are of a nonlinear type. This will be clear by investigating the 

general and important special class model equations. 

The general model [15] is given in Equation 1. 
 

n n n n n l n n n

t+1 t t t t t t t t
x f (x )+ A (x )x + (x )v= G

       (1a) 
l l n l n l l n l

t+1 t t t t t t t t
x = f (x )+ A (x )x + G (x )v

         (1b) 
n n l

t t t t t t t
y = h (x )+ C (x )x + e

                         (1c) 

1 1, , ,n l n l

t t t t+ +x x x x
 represents the nonlinear and linear state 

variables at 
( 1)tht +

 and 
tht  time. ty

 gives the 
tht time 

interval measurements. , ,n n l n n l n

t t t t t t t tG (x ) G (x ),C (x ), A (x )

n n

t tA (x )  describes the constant matrix functions. 
( )t

n

t
h x

gives the measurement function and 

n n l n

t t t t
f (x ), f (x )

 

represents the functions related to nonlinear and linear state 

variables. The process and measurement noise are represented 

by tv
and te

 respectively. The noises are assumed to be 

Gaussian. 

The important special model [18], [20], [21], [15] is 

represented using Equations 2. 

 

t

n

n,t

n n n l n n

t+1 t l, t t tx x + A x + A v= G                           (2a) 

l l n l l l l

t+1 n,t t l,t t t tx = A x + A x + G v                             (2b) 

         n

t t t t
y = h (x )+ + e                                  (2c) 

,l n l n l

n,t l,t l,t

n

n,t t tA , , , ,A A A G G
 represents the constant 

matrices related to nonlinear and linear state variables. On 

comparing equations 1 & 2 it is clear that the state equations are 

linear and the measurement equation is nonlinear. Also, it is 

worth noting that the measurement equation (2c) contains only 

nonlinear information and hence the measurement data can be 

only used in the case of particle filter during the estimation 
process. The effect of measurement reaches KF via the time 

update and not through the measurement update. 

 

3. ADAPTIVE MARGINALIZED PARTICLE 

FILTER 
 

Adaptive Marginalized Particle Filter [20], [21] is an 

improved/modified version of the Marginalized Particle Filter 

designed to utilize the varying nature of noise affecting the 

measurement data. It has been already proved the noise 

tolerance property of MPF. The conclusion that can be drawn 

from this property is that even if the number of particles used to 

represent the distribution is reduced the effect it produces on the  

variance of the estimates will be less when compared to that 

produced in the case of PF. AMPF is based on this noise 

tolerance property of MPF. The basic idea behind AMPF is to 

adapt the number of particles depending upon the amount of 

noise present in the measurements.  

Thus, AMPF makes use of these fluctuating characteristics 

of noise thereby reducing the number of particles whenever the 
noise is less and resetting to the normal number of particles 

when the noise is more. As the number of particles is reduced 

whenever possible by accounting the amount of noise present 

in the measurement the overall estimation speed will be 

improved even when compared to that obtained in the case of 

MPF. It is also worth noting that whenever the number of 

particles is reduced the aposterior distribution will be 

reinitialized.  

The main improvement that can be seen when estimation 

is done using AMPF is twofold, the estimation speed will be 

improved and due to the reinitialization of aposterior 
distribution, the variance of the estimates will be much less 

when the amount of noise affecting the measurements are more. 

Similarly, the improvement seen in terms of execution speed 

will be more when the fluctuation of noise is more.  

The detailed algorithm along with the various steps 

involved in the Adaptive Marginalized Particle Filter is 

mentioned in the following papers [20], [21]. 

 

4. TARGET TRACKING PROBLEM AND 

SIMULATION 
 

A target tracking problem [18], [20], [21], [19], [22] is 

considered in this paper in order to evaluate the performance of 

Adaptive Marginalized Particle Filter. The problem includes 
the tracking of an aircraft performing some maneuvering. The 

various variables of interest including position and velocity will 

be estimated using the state estimation technique AMPF. The 

problem will be modeled as a 2-dimensional constant 

acceleration model.  A level flight is considered to make the 

problem less complicated. The dynamic state-space model of 

the problem considered is mentioned in Equation 3 where the 

height component is discarded as the aircraft is assumed to 

possess a level flight. 
2

2
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0 0 0 0 0 1
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Equations (3a) & (3b) denotes the state equation and 

measurement equation respectively. On comparing with the 

important special class model mentioned in section 2, it is clear 

that the above tracking problem belongs to that category in 

which the state equations are linear and measurement equations 

are nonlinear.  

In this problem, the range and bearing angle of aircraft are 
the measurement data which will be used by AMPF to estimate 

the state variables including position, velocity, and 

acceleration. 
, , , , ,x y x y x yp p v v a a

represents the position, 

velocity, and acceleration state variables along x and y 

coordinates. The z coordinate is not considered due to the level 

flight assumption made earlier. t
x

=

T( , , , , , )x y x y x yp p v v a a
 

represents the state vector comprising of the state variables. T 

gives the sampling period which is assumed to be 1 sec. 

Measurements range and bearing angle are denoted by r and θ. 

t
e

and t
v

represents the measurement and process noises 

associated with the model having covariance 

 

( )cov 250,0.5diag= =R e
                  (4a) 

and  

( ) (450,450)cov diag= =n n
Q v

           (4b) 

( ) (5,4,0.8,0.7)cov diag= =l l
Q v

       (4c)  

respectively. 
 

The state vector comprises of position, velocity, and 

acceleration components, in which position components 

constitute the nonlinear state variables, velocity, and 

acceleration components constitute the linear state variables. 

Therefore, the state vector can be split into two as follows 

 

,

x

x y

y x

y

v

p v

p a

a

 
 

   = =    
 
 

ln

t t
x x

                              (5) 

where 
,n

t t

l
x x

denotes the nonlinear and linear state 

variables respectively. On comparing the dynamic state-space 

model of the problem with the given important special model it 

can be noted that the value of the term 

l n

n,t t
A x

 is zero and the 

corresponding terms are given by 

2 2 4 4;X X= =n l

t t
G I G I

 

1 0 1 0 0.5 0
;

0 1 0 1 0 0.5

   
= =   
   

n n

n,t l,t
A A

 

4 2

1 0 1 0

0 1 0 1
;

0 0 1 0

0 0 0 1

X

 
 
 = =
 
 
 

l l

n,t l,t
A A0

               (6) 

 

The state estimates of the target tracking problem are 

evaluated using Monte Carlo (MC) simulations. 200 MC 

simulations are done to get a stable estimate. The experimental 

data used for simulation is first evaluated using equations 3. The 

actual values of state variables will be used as a reference to 

determine the performance of AMPF by comparing the 

evaluated state estimate with the original values of the state 

variables. The measurements range, and bearing angle is also 

calculated using the original state variables and are 
contaminated with Gaussian noise before giving to the AMPF 

for state estimation to make the simulation closer to the real-

world scenario.  

The measurements are also given to MPF and PF for state 

estimation of the performance all the three filters will be 

compared. One way of performance comparison is based on 

Root Mean Square Error (RMSE) which is the most popular 

parameter and it is defined as 
1

2
2

2
1 1

1 1 ˆ( )
N

MCNN

MCt j
N

= =

 
− 

 
  true (j)

t tx x

          (7) 

 

where 
true

tx and ˆ (j)

tx denotes the original value and the 

estimated value of the state variable at time t of  
jth

MC 

simulation.  MCN
 gives the number of Monte Carlo 

simulations and N gives the number of times samples. The filter 

parameters used for MC simulation are given in Table 1.   

Resampling which is done to avoid the problem of 

degeneracy is also a deciding factor of the performance of the 

AMPF filter. The effect of different resampling techniques is 

discussed in the paper [21]. 

The aircraft trajectory used for the simulation is illustrated 

in Figure 1 and simulation is carried out using 5000 particles 
for 200 MC simulations. Now onwards execution time will be 

expressed in seconds (s), RMSE related to velocity and position 

will be expressed in 
m s

 and m respectively. The initial 

coordinates of the aircraft are assumed to be at the coordinates             

[-1000*10, 1000*5], observer (Radar) is located at the origin of 

the coordinate system, and aircraft moves with a constant 

acceleration of 0.5 

2
m s

. 

Figure 1 shows the actual trajectory the aircraft takes 

comprising of turns and straight-line motion. As mentioned, 

earlier all the values of the state variables position, velocity, 

acceleration, range and bearing angle corresponding to this 
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aircraft trajectory will be evaluated using Equation 3 for 600-

time samples and will be stored as reference for comparing  

TABLE I.  PARAMETER VALUES 

 

the performance of the state estimation using PF, MPF, and 

AMPF. The range and bearing angle of the aircraft with respect 

to the observer serves as the input to all the filters. The 
precalculated range and bearing angle will be contaminated 

with Gaussian noise before it is applied to the filters. The 

corresponding range and bearing angle are shown in Figure 2 

(a) & (b) respectively. 
The performance of the state estimation filters applied to 

this target tracking example will be discussed in section 5. 

 

5. RESULTS AND DISCUSSION 
 

The effectiveness of any state estimation filters as those 

mentioned in this paper is usually expressed in terms of 
variance of the estimates and execution time. The variance of 

the state estimates which is an indication of the deviation from 

the reference values must be as small as possible showing better 

tracking.  

Figure 3 shows the tracking of the trajectory by PF, MPF,  

AMPF. From the figure it is clear that all the three filters are 

able to track the trajectory, however the estimates obtained 

using AMPF has less variance which will be clear by comparing 
the overall RMSE of state variables given in Table II. 

TABLE II.  SIMULATION RESULT OF PF, MPF & AMPF IN THE CASE OF 

MANEUVERING TRAJECTORY WITH 5000 PARTICLES 

Parameter PF MPF AMPF 

Execution Time 0.75108 0.72756 0.44266 

RMSE X Position 136.20087 128.2502 125.52308 

RMSE Y Position 177.8566 163.9899 160.66835 

RMSE X Velocity 12.24920 10.72792 10.19292 

RMSE Y Velocity 14.63040 12.97513 12.6135 

 

From Table II, it can be noted that the Root Mean Square 

Error (decimal values not mentioned) of the x coordinate of 

position is 136 m in the case of PF, 128 m with MPF, and 125 

m in the case of AMPF. It can be interpreted that AMPF was 

able to estimate the x position state variable with lesser variance 
than with PF and MPF. This is a clear indication that AMPF can 

Parameter Values 

Number of Monte Carlo Simulations 200 

Initial Position 
, ][

x y
p p

 in m 
[-1000*10,1000*5] 

Initial Velocity 
[ , ]x yv v

 in 
m s

 
40 

Acceleration 
[ , ]x ya a

 in 

2m s
 

0.5 

Initial state covariance  o
P

 

diag(0.02,0.02,0.02, 

0.02,0.02,0.02) 

Measurement Noise Covariance R  diag(250,0.5) 

Non-linear Process Noise Covariance  

n
Q

 
diag(450,450) 

Linear Process Noise Covariance  

l
Q

 
diag(5,4,0.8,0.7) 

 
 

Figure.1. Maneuvering trajectory traced by the aircraft 

with initial coordinates [-1000*10, 1000*5] and * 

denotes the location of the observer. 

 

 
                                     (a) 

 

 
                                    (b) 

Figure.2. Range and Bearing Angle. (a) Range (m) (b) 

Bearing Angle (deg) 
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track the aircraft much better than the other two filters. A 

similar result is observed in the case of the y coordinate of 

position as well. RMSE along y position is 177 m with PF, 163 

m in the case of MPF, and only 160 m using AMPF. Here also 

it can be concluded that AMPF outperforms other filters. State 

variable velocity along x and y coordinates is also estimated 

using the three filters. It can be comprehended from Table II 

that the velocity estimates obtained using AMPF are much 

better than those obtained using MPF and PF. These results are 
in line with the results obtained in paper [20] where AMPF is 

applied in the case of a Non-Maneuvering and a different 

Maneuvering Trajectory.  

The main feature of AMPF, when compared to MPF and 

PF is its execution speed. From Table II, it is evident that AMPF 

can find the state estimates much faster than that obtained using 

MPF and PF. PF took nearly 0.75108s for estimation to 

complete while MPF needed only 0.72756s but AMPF was 

even faster than the two, taking only 0.44266s to complete the 

estimation process. Thus, an improvement of 41 % and 39 % 

with respect to PF and MPF is obtained. 

TABLE III.  SIMULATION RESULT OF PF, MPF & AMPF IN THE CASE OF 

MANEUVERING TRAJECTORY WITH 10000 PARTICLES  

Parameter PF MPF AMPF 

Execution Time 1.39615 1.26689 0.75055 

RMSE X Position 137.72451 129.44478 126.63331 

RMSE Y Position 172.5083 165.1298 162.1706 

RMSE X Velocity 12.71626 10.69317 10.0143 

RMSE Y Velocity 13.88465 12.43446 12.0547 

 

It can also note that as the number of particles is increased 

then the improvement in execution time is similar to that 

obtained using a lesser number of particles indicating the 

consistency and the variance is also less compared to MPF & 

PF. This can be clearly understood by comparing the results 

given in Table II & III. The main reason for the improvement 

in variance even though the number of particles is reduced is 

mainly due to the reinitialization step of AMPF algorithm [20], 

[21]. 

Thus, from Figure 3 and tables II & III, it can be concluded 

that target tracking using the state estimation filter AMPF will 

yield much better performance compared to that obtained in the 

case of PF and MPF in terms of RMSE and execution time. 

 

6. CONCLUSION 
 

The solution for target tracking applications by one of the 

finest state estimation algorithms Adaptive Marginalized 

Particle Filter and the improvement obtained by the filter 

compared to the conventional filters like Particle Filter and 

Marginalized Particle Filter is studied. The effect of the 
reinitialization step of AMPF on the performance was 

demonstrated by the simulation using a typical target tracking 

example. The improvement in execution time will be a big 

bonus when it comes to applications such as enemy target 

tracking, ballistic missile tracking, etc. as in such applications 

the faster the state variables can be found the sooner it can be 

intercepted. The AMPF algorithm can be also easily extended 

to the tracking of multiple targets. 
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