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ABSTRACT 
 

On-line arithmetic attracts the computer arithmetic community primarily owing to its ability to admit digit-level pipelining of 

several operations, apparently having distinct computational characteristics. The pipelining results in substantial reduction in the 

number of clock cycles needed for computing and consequently ensures better performance of the processor. The magnitude 

comparator is an indispensable part of any arithmetic processor. Magnitude comparator seemingly involves complex design, 

whatsoever number system, conventional or unconventional, is employed. However, in this paper, it is strived to be shown that 

in on-line arithmetic platform a simple magnitude comparator for higher-radix may be realized at ease. It may be done thanks to 

interpreting magnitude comparison in terms of additions/subtractions and sign-detections and the ability to circulate all resulting 

digits from the most-significant position to the least-significant position in an effective and efficient manner. Thus it may be 

possible to proceed further towards developing a full-fledged processor using on-line arithmetic only.   

 
Keywords: On-line arithmetic, magnitude comparator, higher-radix, ordinary signed-digit number systems, sign-detection 

 

 

1.  INTRODUCTION 

 On-line arithmetic (OLA), introduced in [1], reflects 

a new trend in computer arithmetic (CA) where the digits are 

passed from the most-significant (MS) to least-significant (LS) 

position ([2]-[3]). In OLA an output digit of an operation may 

be consumed by the next operator as an input before all 

remaining output digits of the former operation are produced. 

Thus various operations (like addition/subtraction, 

multiplication, division) may be arranged to overlap, causing a 

digit-level pipelining and consequently substantial reduction 

in the number of computational clock cycles. As a result the 

processor may perform better. The number system (NS) 

employed by any OLA unit is necessarily a redundant NS like 

signed-digit number system (SDNS) [4]-[7]. In OLA platform, 

some operations have been found to be efficiently 

implementable [1]-[3], [8]-[9] but no report is available yet for 

magnitude comparison (MCN) which is also an important 

arithmetic operation (AO). It is mentionable that for any CA 

unit employing whatsoever NS, conventional or 

unconventional, MCN seems to be a complex operation and 

investigations to develop better magnitude comparators 

(MCRs) is being continued [10]-[12].  

 

In this paper, the author would like to investigate 

designing an on-line magnitude comparator (OLMCR) using 

typical signed-digit arithmetic (SDA), particularly thanks to its 

absolute/ almost carry-free, simple addition/ subtraction 

property and the technique of interpreting MCN in terms of 

addition/ subtraction and sign-detection (SDTN) as presented 

in [12]. The proposed CA algorithm (CAA) obviously deals 

with higher-radix, in line with the observation that high-radix 

OLA may lead to more credible and accurate computing [13].  

 

The rest portion of the paper is organized with four 

sections as follows: In the Related Works section the 

discussion starts with specifying the current state of the MCN 

problem, followed by stating the key issues of OLA and 

SDNS in brief and thereafter the schematic realization of on-

line adder for higher-radix and an OLA-algorithm (OLAA) for 

SDTN are presented. In Designing On-line Comparator for 

Higher-Radix section an OLMCR is strived to be developed 

for higher radix and the schematic diagram of the proposed 

algorithm is also shown. In the Results and Discussion section 

the step-by-step operations of the proposed algorithm are 

shown with an example. Finally the study is ended in the 

Conclusion section, indicating its major contribution to the 

literature.  

 

2. RELATED WORKS 
 

2.1. MAGNITUDE COMPARISON 

Let A and B are two n-digit unsigned binary numbers 

where A = An-1An-2........A0 and B = Bn-1Bn-2........B0. The 

ordinary pencil-and-paper method (PPM) for MCN of A and B 

is presented as algorithm 1 as follows: 

 

Algorithm 1: 

a. Initialize: i = n-1 

b. If (Ai>Bi) then A>B.  

Otherwise, if (Ai<Bi) then A<B 

Exit 

c. If (Ai=Bi) then    

i. If (i=0) then A=B 

Exit 

ii. Else set: i=i-1 

Go to step (b) 

 

Although looking simple to implement, PPM for 

MCN is too slow owing to linear dependency of the iterative 

values and obviously it consumes O(n) time.  

 

Recently a faster MCN algorithm has been developed 

on the basis of divide-and-conquer philosophy. Let A=AHAL 

and B=BHBL where AH and BH represent the most-significant 

half (MSH) of A and B respectively and AL and BL represent 
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the least-significant half (LSH) of A and B respectively. Then 

A>B if (AH>BH) or ((AH=BH) and (AL>BL)). Alternatively 

A<B if (AH<BH) or ((AH=BH) and (AL<BL)). Also A=B if 

((AH=BH) and (AL=BL)). Then using bottom-up approach a 

O(logn) time MCR for A and B may be easily developed [10]. 

A sample execution sequence for an ordinary log-depth MCN 

scheme dealing with unsigned numbers is shown in Fig. 1 as 

an example where A=10110011 and B=11000010. In Fig. 1 

L1, L2, L3 and L4 denote the level 1, level 2, level 3 and level 

4 respectively.  
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Fig. 1: Log-depth MCN Approach 

 

As shown in Fig. 1 for the same level the comparison 

involves the (vertically) upper and lower cells and the result is 

expressed by either shading or fixing boundary-characteristics 

of the concerned cells. Any shaded cell has higher magnitude 

than its un-shaded counterpart. On the other hand, the cells 

marked by dotted boundaries have the equal magnitude.  

In this sub-section discussion held so far has been concerned 

with the conventional NS (CNS). For the unconventional NS 

(UCNS) designing a MCR is also a challenging task [5], [11]-

[12].   

 

2.2. ON-LINE ARITHMETIC 

In the conventional radix-complement arithmetic, for 

some operations (like division and square root) the results are 

generated from MS-digit (MSD) to LS-digit (LSD) and for 

some other operations (like addition and multiplication) the 

results are produced from LSD to MSD. For arithmetic-

intensive applications data need to propagate among many 

different operations and so large latency may occur. An 

alternative idea would be to explore the scope to generate all 

resulting digits of every AO to a particular direction only.  

 

The digit-serial arithmetic [6] seems to match to the 

idea and it may perform better than the ordinary fixed-point 

arithmetic. There exist two different versions of digit-serial 

arithmetic: LSD-first (LSDF) and MSD-first (MSDF). In the 

literature MSDF arithmetic has been termed as OLA and it 

appears to be more effective and efficient compared to LSDF 

arithmetic. OLA has been being intensively investigated over 

the fields of ASIC and DSP. In digit-serial OLA ɤ+1 digits of 

the input operand are required for computing the first digit of 

the result and after that, for each new digit of the input 

operand, an extra digit of the result is produced. In this 

connection, ɤ is called the online delay. Computing online 

delay for a typical problem is shown in Figure 2. 

 

Cycle 2̅ 1̅ 0 1 2 ..... 

Input X1 X2 X3 X4 X5 ..... 

Compute ... .... .... .... .... ..... 

Output    Z1 Z2  

                         So  ɤ=2 

 

Figure 2: Computing Delay in OLA 

 

Although originally being introduced as digit-serial 

arithmetic, later the parallel version of OLA, called parallel 

OLA, has been introduced too [6]. In parallel OLA the scope 

of intra-operation parallelism (like parallel addition) is 

explored too. Obviously the parallel OLA may decrease 

latency at the cost of employing addition hardware ([14], 

[15]). In article [16] efficient FPGA implementation of online 

adders and multipliers are discussed. In article [17] it is 

observed that accumulation of timing errors may be resisted 

thanks to the MSDF computing observed in OLA and 

obviously timing errors may appear at LSDs only. However, 

the consumption of more computing resources compared to 

the traditional fixed-point arithmetic circuits appears to be a 

drawback of the parallel OLA driven arithmetic circuits.   

  

On the other hand, digit-serial OLA involves small 

circuitry and consumes less power, still resulting in high-speed 

and so it is suited for real-time control systems ([18]-[19]). 

However, serial OLA usually consume more clock cycles than 

the parallel. So the decision on using a particular mode of 

OLA (serial/ parallel) ultimately rests with the desired 

application characteristics. In this work henceforth employing 

serial OLA is assumed, unless explicitly stated.  

 

Recently the implementation issues of the common 

AOs (namely, addition, subtraction, multiplication and 

division) in OLA mode have been investigated in details in 

[8]. Another major contribution of the paper [8] is its ability to 

precisely regulate the numerical precision of addition during 

the run-time, unlike the ordinary OLA [2] where precision is 

to be fixed at design time. The scheme proposed in [8] 
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exhausts the fixed-precision adder and also employs on-chip 

RAM for storing the residues, resulting in a variable precision 

adder. 

 

2.3. THE SIGNED-DIGIT NUMBER SYSTEMS 

For MSDF computation some redundant NS (in form 

of SDNSs) or redundant representation (like carry-save) needs 

to be employed. This is because, owing to the inherent 

redundancy in this case, computing the result in MSDF mode 

may be possible merely on the basis of the partial information 

of the inputs, following some refinements after the arrival of 

the other (or actual) inputs.  In this regard, SDNSs seem to be 

more promising ([1]-[3]). The SDNS is a positional NS but yet 

it is unconventional in the sense that each digit of its digit set 

(DS) carries its independent sign. The most primitive form of 

SDNS is the ordinary SDNS (OSDNS). A radix-r OSDNS is 

defined as an unconventional, positional NS that works on the 

DS {�̅�, �̅� + 1, . . , 1̅ , 0, 1, . . , 𝛼 − 1, 𝛼} where r/2 < α < r [4]. 

The DS of the radix-4 OSDNS is, for example, given by

}3,2,1,0,1,2,3{ . The most important contribution of the SDA is 

allowing addition/ subtraction to be performed in a time which 

is precision-independent (or constant-time). The constant-time 

addition/subtraction algorithm for OSDNS, Algorithm 2, is as 

follows:  

Algorithm 2 

a) Input: two n-digit OSDNs as: X=(Xn-1Xn-2…..X0) and 

Y=(Yn-1Yn-2…..Y0).   

b) An intermediate sum, sum-1, P=(Pn-1Pn-2…P0) is 

computed as: Pi = Xi + Yi    ∀ i Є [0, n-1] 

c) Another intermediate sum, sum-2, Sʹ=(SʹnSʹn-1Sʹn-2…Sʹ0) 

and a carry C=(CnCn-1…C1) is computed as: 

Sʹi = Pi – r.Ci    ∀ i Є [0, n-1] 

1̅ if  𝑃𝑖 ≤ �̅� 

Where Ci =   0  if  �̅� < 𝑃𝑖 < 𝛼 

   1  if   𝑃𝑖 ≥ 𝛼   

Initially C0 = 0 and lastly Sʹn = 0 

d) The final sum S = (SnSn-1…..S0) is computed in terms of: 

Si+1 = Sʹi+1 + Ci  ∀ i Є [0, n-1] 

Here Sn is the nth (extra) digit used for correctly 

accommodating the sum. Stepwise execution of the constant-

time addition using Algorithm 2 is shown in Fig. 3 as an 

example where X = (3̅1̅102̅3)4 and Y = (1̅33202̅)4 

X             3̅        1̅       1       0      2̅       3 

Y           1̅        3       3       2      0      2̅ 

----------------------------------------------------- 

P            4̅        2       4       2      2̅      1 

Sʹ                       0        2       0       2      2̅     1  

C   1̅       0        1      0      0      0    × 

----------------------------------------------------- 

S              1̅        0        3       0      2       2̅     1       

  Fig. 3:  Parallel Addition in OSDNS: An Example 

Here X = -(3269)10, Y = -(34)10 and S = -(3303)10. Obviously 

S=X+Y holds true. Constant-time addition/subtraction is a 

significant achievement in computing as adders are often 

viewed as the basic building block of any arithmetic unit (AU) 

and consequently even some more complex operations, like 

multiplication and division, may run faster. Thus SDNSs seem 

suitable for digital signal processing, image processing and 

cryptography.    

 

Even after the OSDNS many other SDNSs have 

come into existence with broader areas of applications. 

Generalized SDNS (GSDNS) [7] may be viewed as a super-

class of OSDNS. For GSDNS DS = {�̅�, �̅� +
1, . . , 1̅ , 0, 1, . . , 𝛽 − 1, 𝛽} where α ≥ 0, β ≥ 0 and α + β + 1 > r. 

The redundancy index of GSDNS is defined as: 𝜌 = 𝛼 + 𝛽 +
1 − 𝑟 . Obviously the radix-4 SDNS with DS = 

{3̅, 2̅ … ,0,1, . ,3} is more redundant compared to the radix-4 

SDNS with DS = {2̅, 1̅, … ,0,1, . ,2}. A class of SDNS, called 

binary SDNS (BSDNS) works on the DS }1,0,1{ and it seems 

to be one of the widely investigated classes of SDNDS. 

Recently another class of SDNS, called canonical SDNS 

(CSDNS) has got a lot press [5].  

 

For realizing the SDNS in hardware some mappings 

from its unconventional digits to binary strings are needed. 

For BSDNS two widely used encoding techniques are 

positive-negative encoding (PNE) and two’s-complement 

encoding (TCE) ([5], [20]). In PNE the binary signed-digits 

(BSDs) 1̅, 0 and 1 are encoded as 01, 00 and 10 respectively. 

On the other hand, in TCE the BSDs 1̅, 0 and 1 are encoded as 

11, 00 and 01 respectively. For the higher-radix SDNSs 

(HRSDNSs) TCE may be extended. For instance, for radix-4 

OSDNS the signed-digits (SDs) 3̅, 2̅ , 1̅, 0, 1, 2, 3 of its DS may 

be encoded as 101, 110, 111, 000, 001, 010, 011 respectively. 

 

Some other notable features of SDNSs include 

regularity in designing arithmetic circuit, low power 

consumption for performing some operations and fault-

tolerance.  

 

SDNSs offer regularity owing to its ability to perform 

the different stages of any multi-stage operation using the 

similar-looking arithmetic equations (AEs) and obviously 

employing look-alike hardware [5].  

 

Recently the demand for low-power consuming 

arithmetic circuits has increased drastically. This is not only to 

support the increasing fabrication density of the IC, but also 

ensuring greater portability. However, speed and power often 

appear as two conflicting parameters and a trade-off needs to 

be maintained. Even though SDNSs are basically introduced 

for high-speed, it may be able to support low-power 

computing too. Research has shown that binary signed-digit 

(BSD) adder may consume less power compared to the 

traditional two’s-complement (TC)-adder [21]. In the 

literature, employing SDA some other AOs consuming low-

power are also known, including addition, multiplication and 

division ([22]-[24]).  
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For SDNSs the carry/borrow propagation is restricted 

and so the effect of any fault at some positional digit tends to 

be localized, leading to achieve more fault-tolerance in AUs 

[25].  

 

In the primitive form SDNSs do not support the 

floating-point computations. However, unless addressing 

floating-point issues no stand-alone processor may be 

designed. Recently some variants of SDNSs have been 

introduced for allowing floating-point computations ([26]- 

[27]). 

 

2.4. REALIZING ON-LINE ADDER FOR HIGHER-

RADIX 

The problem of designing on-line adder, particularly, 

may be solved employing OSDNSs at ease. This is because, in 

that case as shown in Algorithm 2, the sum-digit resulted at ith 

iteration is refined and settled at (i+1)th iteration using the 

incoming carry available at that iteration.  

 

 

 

 

 

 

 

 

 

 

Figure 4: An OLA Adder for Higher-Radix 

 

 

2.5. REALIZING ON-LINE SIGN-DETECTOR 

Obviously no further revision is required during the 

subsequent iterations. The computational delay of a n-digit 

online adder is given by the delay caused by (n+2) full adders. 

The schematic diagram for ith iteration of an OLA adder for 

radix>2 is shown is Fig. 4.  

 

Sign-detector may act as the kernel of some AUs 

employing SDNSs [28]. The sign of a sign-digit number 

(SDN) is evident from the sign of its MS non-zero digit. 

Unlike to the complex SDTN process in the traditional SDA 

[29], OLA provides a simple, straightforward solution of the 

SDTN problem. For a radix-r SDN A=An-1An-2.......A0, an 

OLAA for SDTN, Algorithm 3, is presented as follows: 

 

 

 

 

 

Algorithm 3 

a) Initialize: i=n-1, PA=0 

b) Set: Ei = sign (Ai)  

c) Compute: PA = PA ø Ei 

Where X ø Y represents sign of X if X≠0 and otherwise it 

represents the sign of Y. 

d) Do: 

i. Set: i=i-1 

ii. If (i≥0) Go to step (b) 

      iii,  Otherwise, 

        Output: PA 

        Exit  

 

3. DESIGNING ON-LINE COMPARATOR 

FOR HIGHER-RADIX 
For any two (signed or unsigned) numbers, X and Y, 

as X2 – Y2 = (X+Y). (X-Y), if the sign of either (X+Y) or (X-

Y) is zero then |X|=|Y|. Otherwise, if the signs of (X+Y) and 

(X-Y) agree then |X|>|Y| holds true and if the signs of (X+Y) 

and (X-Y) disagree then |X|<|Y| holds true. Thus for any NS, 

MCN may be interpreted in terms of additions/subtractions 

and SDTNs and some comparator may be designed in a 

straightforward manner. Further thanks to the constant-time 

addition/ subtraction property of SDNS, the time complexity 

characteristics of both MCN and SDTN are the same [12]. As 

shown in sub-section 2.4 in OSDNS for any two signed-digit 

number (SDN)-input the sum/difference and carry-out/ 

borrow-out at/from any position during addition/ subtraction 

depends only the immediate lower-significant digits, besides 

those particular positional digits and so digit-serial output may 

be efficiently generated from MS-to-LS position. In addition 

SDTN may be circulated digit-serially from MS-to-LS 

position as presented in the sub-section 2.4. Thus proceedings 

towards a simple OLMCR design may be possible with 

efficacy as well as efficiency.  

 

In the regard, for processing the following notations 

are used with respect to ith position ∀ i ϵ [-1, n] where n is the 

number of input digits:  

    

Pi means pre-intermediate sum 

Qi means pre-intermediate difference 

Ci means carry-out 

Bi means borrow-out 

Sʹi means intermediate sum 

Dʹi means intermediate difference 

Si means actual sum 

Di means actual difference 

Ei sign-information of Si  

Fi sign-information of Di 

PE means sign-information of SDN SnSn-1....Si+1 

PF means sign-information of SDN DnDn-1....Di+1 

 

      Xi  

        ↕  

                 +Yi                          

                 ----                                

                               = Pi                       

                                  ↓    

         Ci       ↓ 

 

 

+ Sʹi+1                     
---------                          Sʹi  

 = Si+1                           ↓ 

Computations 

in (i+1)th 

iteration 

 

↓              ↓ 

Computations 

in (i-1)th 

iteration 

   

 

  

 

 

  

↓              ↓ 
      

Computations 

in (i-1)th 

iteration 

 

↓               ↓ 

Computations 

in (i-2)th 

iteration    

 

↓              ↓              
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Where all of Ei, Fi, PE and PF are assumed to represent 

positive, zero and negative signs by 1, 0 and 1̅ respectively, 

employing some standard 2-bit encoding as discussed in sub-

section 2.3. Consider an OSDNS defined on radix r (>2) and 

DS {�̅�, �̅� + 1, … … . … , 1̅ , 0, 1, … … … . . . , 𝛼 − 1, 𝛼}           

where 
𝑟

2
< α < r.  Let X = Xn-1Xn-2..........X0 and Y = Yn-1Yn-

2..........Y0 be two numbers of the NS. Then an OLMC-

algorithm, algorithm 4, is proposed as follows: 

Algorithm 4: 

a. Set: X-1 = 0, Y-1 = 0, Sʹn = 0, Dʹn = 0, PE = 0 and     PF = 0 

b. For i = n–1 down to 1̅  compute step i through vii: 

               𝑖.  𝑃𝑖 =  𝑋𝑖 +  𝑌𝑖 ,   𝑄𝑖 =  𝑋𝑖 + 𝑌�̅� 

  1, if Pi ≥ α   

ii. Ci =  0, if |Pi|< α   

  1̅, if Pi ≤  �̅�    

  1, if Qi ≥ α 

    Bi =  0, if |Qi|< α 

  1̅, if Qi ≤  �̅� 

iii. Sʹi = Pi – r.Ci, Dʹi = Qi – r.Bi  

iv. Si+1 = Sʹi+1 + Ci, Di+1 = Dʹi+1 + Bi 

v. Set: Ei+1 = sign (Si+1) and Fi+1 = sign (Di+1)  

vi. Define PE and PF as:  

            PE = PE ø Ei+1, PF = PF ø Fi+1  

     Where K ø L represents sign of K if K≠ 0   

     and otherwise it represents sign of L. 

vii. M = PE. PF 

c. If (PE = 0) or (PF = 0) then |X| = |Y| 

Otherwise, if (M = 1) then |X| > |Y| 

   Else |X| < |Y|. 

Computations at ith iteration are shown in Fig. 5 as the shaded 

region where the symbols may be interpreted as per 

algorithmic operations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Computations in ith iteration  

4. RESULTS AND DISCUSSION 
For the sake of clarifying its step-by-step operations, 

at first, the proposed algorithm, algorithm 4, is to be tested on 

some higher-radix input. For example, consider, two radix-4 

ordinary SDNs, X and Y where X = 121̅01, Y=1̅02̅1̅1̅. The 

iterative computations for MCN of X and Y are presented in 

table 1. 

 

Table 1: MCN of X and Y as an Example 

 

Iterations (i) → 4 3 2 1 0 �̅� 
Temporaries↓ 

Pi 0 2 3̅ 1̅ 0 0 

Qi 2 2 1 1 2 0 

Ci 0 1 1̅ 0 0 0 

Bi 1 1 0 0 1 0 

Sʹi 0 2̅ 1 1̅ 0 0 

Dʹi 2̅ 2̅ 1 1 2̅ 0 

Si+1 0 1 3̅ 1 1̅ 0 

Di+1 1 1̅ 2̅ 1 2 2̅ 

Ei+1 0 1 1̅ 1 1̅ 0 

Fi+1 1 1̅ 1̅ 1 1 1̅ 

PE 0 1 1 1 1 1 

PF 1 1 1 1 1 1 
M 0 1 1 1 1 1 

 

Therefore |X| > |Y| which is obviously holds true. 

 

The CAA presented in this paper may be 

conceptually extended for GSDNS, obviously including 

BSDNS. However, the addition/ subtraction rules for BSDNS 

(in broad sense for GSDNS) are known to be fairly complex 

([5], [7]). So the direct scaling of the OLMCR presented in 

this paper may be inapplicable beyond the OSDNS owing to 

possibly large area, delay and power requirements.  

 

5. CONCLUSION 
MCR design is a complex problem for any mode of 

computing, conventional or unconventional. Even in the 

existing literature of OLA no report is available on designing 

MCR. In this paper, a simple and efficient OLMCR for 

higher-radix is proposed on the basis of interpreting MCN in 

terms of additions/subtractions and SDTNs [12] as well as 

circulating the input/ output-digits of both SD-

addition/subtraction and SDTN serially from MS-to-LS 

position. Consequently in OLA platform MCN may also be 

pipelined with other CA operations, leading to achieve faster 

processing speed as a whole. The future work of the author 

would be investigating OLMCR using BSDNS. 
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