

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

92

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

Designing an On-Line Magnitude Comparator for Higher-Radix

Dr. Madhu Sudan Chakraborty

Department of Computer Science, Indas Mahavidyalya, Indas, Bankura (WB), India, Pin 722205

E-mail: mailmschakraborty@rediffmail.com

ABSTRACT

On-line arithmetic attracts the computer arithmetic community primarily owing to its ability to admit digit-level pipelining of

several operations, apparently having distinct computational characteristics. The pipelining results in substantial reduction in the

number of clock cycles needed for computing and consequently ensures better performance of the processor. The magnitude

comparator is an indispensable part of any arithmetic processor. Magnitude comparator seemingly involves complex design,

whatsoever number system, conventional or unconventional, is employed. However, in this paper, it is strived to be shown that

in on-line arithmetic platform a simple magnitude comparator for higher-radix may be realized at ease. It may be done thanks to

interpreting magnitude comparison in terms of additions/subtractions and sign-detections and the ability to circulate all resulting

digits from the most-significant position to the least-significant position in an effective and efficient manner. Thus it may be

possible to proceed further towards developing a full-fledged processor using on-line arithmetic only.

Keywords: On-line arithmetic, magnitude comparator, higher-radix, ordinary signed-digit number systems, sign-detection

1. INTRODUCTION

 On-line arithmetic (OLA), introduced in [1], reflects

a new trend in computer arithmetic (CA) where the digits are

passed from the most-significant (MS) to least-significant (LS)

position ([2]-[3]). In OLA an output digit of an operation may

be consumed by the next operator as an input before all

remaining output digits of the former operation are produced.

Thus various operations (like addition/subtraction,

multiplication, division) may be arranged to overlap, causing a

digit-level pipelining and consequently substantial reduction

in the number of computational clock cycles. As a result the

processor may perform better. The number system (NS)

employed by any OLA unit is necessarily a redundant NS like

signed-digit number system (SDNS) [4]-[7]. In OLA platform,

some operations have been found to be efficiently

implementable [1]-[3], [8]-[9] but no report is available yet for

magnitude comparison (MCN) which is also an important

arithmetic operation (AO). It is mentionable that for any CA

unit employing whatsoever NS, conventional or

unconventional, MCN seems to be a complex operation and

investigations to develop better magnitude comparators

(MCRs) is being continued [10]-[12].

In this paper, the author would like to investigate

designing an on-line magnitude comparator (OLMCR) using

typical signed-digit arithmetic (SDA), particularly thanks to its

absolute/ almost carry-free, simple addition/ subtraction

property and the technique of interpreting MCN in terms of

addition/ subtraction and sign-detection (SDTN) as presented

in [12]. The proposed CA algorithm (CAA) obviously deals

with higher-radix, in line with the observation that high-radix

OLA may lead to more credible and accurate computing [13].

The rest portion of the paper is organized with four

sections as follows: In the Related Works section the

discussion starts with specifying the current state of the MCN

problem, followed by stating the key issues of OLA and

SDNS in brief and thereafter the schematic realization of on-

line adder for higher-radix and an OLA-algorithm (OLAA) for

SDTN are presented. In Designing On-line Comparator for

Higher-Radix section an OLMCR is strived to be developed

for higher radix and the schematic diagram of the proposed

algorithm is also shown. In the Results and Discussion section

the step-by-step operations of the proposed algorithm are

shown with an example. Finally the study is ended in the

Conclusion section, indicating its major contribution to the

literature.

2. RELATED WORKS

2.1. MAGNITUDE COMPARISON

Let A and B are two n-digit unsigned binary numbers

where A = An-1An-2........A0 and B = Bn-1Bn-2........B0. The

ordinary pencil-and-paper method (PPM) for MCN of A and B

is presented as algorithm 1 as follows:

Algorithm 1:

a. Initialize: i = n-1

b. If (Ai>Bi) then A>B.

Otherwise, if (Ai<Bi) then A<B

Exit

c. If (Ai=Bi) then

i. If (i=0) then A=B

Exit

ii. Else set: i=i-1

Go to step (b)

Although looking simple to implement, PPM for

MCN is too slow owing to linear dependency of the iterative

values and obviously it consumes O(n) time.

Recently a faster MCN algorithm has been developed

on the basis of divide-and-conquer philosophy. Let A=AHAL

and B=BHBL where AH and BH represent the most-significant

half (MSH) of A and B respectively and AL and BL represent

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

93

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

the least-significant half (LSH) of A and B respectively. Then

A>B if (AH>BH) or ((AH=BH) and (AL>BL)). Alternatively

A<B if (AH<BH) or ((AH=BH) and (AL<BL)). Also A=B if

((AH=BH) and (AL=BL)). Then using bottom-up approach a

O(logn) time MCR for A and B may be easily developed [10].

A sample execution sequence for an ordinary log-depth MCN

scheme dealing with unsigned numbers is shown in Fig. 1 as

an example where A=10110011 and B=11000010. In Fig. 1

L1, L2, L3 and L4 denote the level 1, level 2, level 3 and level

4 respectively.

 A

 L1

 B

 A

 L2

 B

 A

 L3

 B

 A

 L4

 B

Fig. 1: Log-depth MCN Approach

As shown in Fig. 1 for the same level the comparison

involves the (vertically) upper and lower cells and the result is

expressed by either shading or fixing boundary-characteristics

of the concerned cells. Any shaded cell has higher magnitude

than its un-shaded counterpart. On the other hand, the cells

marked by dotted boundaries have the equal magnitude.

In this sub-section discussion held so far has been concerned

with the conventional NS (CNS). For the unconventional NS

(UCNS) designing a MCR is also a challenging task [5], [11]-

[12].

2.2. ON-LINE ARITHMETIC

In the conventional radix-complement arithmetic, for

some operations (like division and square root) the results are

generated from MS-digit (MSD) to LS-digit (LSD) and for

some other operations (like addition and multiplication) the

results are produced from LSD to MSD. For arithmetic-

intensive applications data need to propagate among many

different operations and so large latency may occur. An

alternative idea would be to explore the scope to generate all

resulting digits of every AO to a particular direction only.

The digit-serial arithmetic [6] seems to match to the

idea and it may perform better than the ordinary fixed-point

arithmetic. There exist two different versions of digit-serial

arithmetic: LSD-first (LSDF) and MSD-first (MSDF). In the

literature MSDF arithmetic has been termed as OLA and it

appears to be more effective and efficient compared to LSDF

arithmetic. OLA has been being intensively investigated over

the fields of ASIC and DSP. In digit-serial OLA ɤ+1 digits of

the input operand are required for computing the first digit of

the result and after that, for each new digit of the input

operand, an extra digit of the result is produced. In this

connection, ɤ is called the online delay. Computing online

delay for a typical problem is shown in Figure 2.

Cycle 2̅ 1̅ 0 1 2

Input X1 X2 X3 X4 X5

Compute

Output Z1 Z2

 So ɤ=2

Figure 2: Computing Delay in OLA

Although originally being introduced as digit-serial

arithmetic, later the parallel version of OLA, called parallel

OLA, has been introduced too [6]. In parallel OLA the scope

of intra-operation parallelism (like parallel addition) is

explored too. Obviously the parallel OLA may decrease

latency at the cost of employing addition hardware ([14],

[15]). In article [16] efficient FPGA implementation of online

adders and multipliers are discussed. In article [17] it is

observed that accumulation of timing errors may be resisted

thanks to the MSDF computing observed in OLA and

obviously timing errors may appear at LSDs only. However,

the consumption of more computing resources compared to

the traditional fixed-point arithmetic circuits appears to be a

drawback of the parallel OLA driven arithmetic circuits.

On the other hand, digit-serial OLA involves small

circuitry and consumes less power, still resulting in high-speed

and so it is suited for real-time control systems ([18]-[19]).

However, serial OLA usually consume more clock cycles than

the parallel. So the decision on using a particular mode of

OLA (serial/ parallel) ultimately rests with the desired

application characteristics. In this work henceforth employing

serial OLA is assumed, unless explicitly stated.

Recently the implementation issues of the common

AOs (namely, addition, subtraction, multiplication and

division) in OLA mode have been investigated in details in

[8]. Another major contribution of the paper [8] is its ability to

precisely regulate the numerical precision of addition during

the run-time, unlike the ordinary OLA [2] where precision is

to be fixed at design time. The scheme proposed in [8]

1

1

0 1 1 0 0 1 1

1

1

1 0 0 0 0 1 0

10 11 00 11

11 00 00 10

1011 0011

1100 0010

10110011

11000010

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

94

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

exhausts the fixed-precision adder and also employs on-chip

RAM for storing the residues, resulting in a variable precision

adder.

2.3. THE SIGNED-DIGIT NUMBER SYSTEMS

For MSDF computation some redundant NS (in form

of SDNSs) or redundant representation (like carry-save) needs

to be employed. This is because, owing to the inherent

redundancy in this case, computing the result in MSDF mode

may be possible merely on the basis of the partial information

of the inputs, following some refinements after the arrival of

the other (or actual) inputs. In this regard, SDNSs seem to be

more promising ([1]-[3]). The SDNS is a positional NS but yet

it is unconventional in the sense that each digit of its digit set

(DS) carries its independent sign. The most primitive form of

SDNS is the ordinary SDNS (OSDNS). A radix-r OSDNS is

defined as an unconventional, positional NS that works on the

DS {�̅�, �̅� + 1, . . , 1̅ , 0, 1, . . , 𝛼 − 1, 𝛼} where r/2 < α < r [4].

The DS of the radix-4 OSDNS is, for example, given by

}3,2,1,0,1,2,3{ . The most important contribution of the SDA is

allowing addition/ subtraction to be performed in a time which

is precision-independent (or constant-time). The constant-time

addition/subtraction algorithm for OSDNS, Algorithm 2, is as

follows:

Algorithm 2

a) Input: two n-digit OSDNs as: X=(Xn-1Xn-2…..X0) and

Y=(Yn-1Yn-2…..Y0).

b) An intermediate sum, sum-1, P=(Pn-1Pn-2…P0) is

computed as: Pi = Xi + Yi ∀ i Є [0, n-1]

c) Another intermediate sum, sum-2, Sʹ=(SʹnSʹn-1Sʹn-2…Sʹ0)

and a carry C=(CnCn-1…C1) is computed as:

Sʹi = Pi – r.Ci ∀ i Є [0, n-1]

1̅ if 𝑃𝑖 ≤ �̅�

Where Ci = 0 if �̅� < 𝑃𝑖 < 𝛼

 1 if 𝑃𝑖 ≥ 𝛼

Initially C0 = 0 and lastly Sʹn = 0

d) The final sum S = (SnSn-1…..S0) is computed in terms of:

Si+1 = Sʹi+1 + Ci ∀ i Є [0, n-1]

Here Sn is the nth (extra) digit used for correctly

accommodating the sum. Stepwise execution of the constant-

time addition using Algorithm 2 is shown in Fig. 3 as an

example where X = (3̅1̅102̅3)4 and Y = (1̅33202̅)4

X 3̅ 1̅ 1 0 2̅ 3

Y 1̅ 3 3 2 0 2̅

P 4̅ 2 4 2 2̅ 1

Sʹ 0 2 0 2 2̅ 1

C 1̅ 0 1 0 0 0 ×

S 1̅ 0 3 0 2 2̅ 1

 Fig. 3: Parallel Addition in OSDNS: An Example

Here X = -(3269)10, Y = -(34)10 and S = -(3303)10. Obviously

S=X+Y holds true. Constant-time addition/subtraction is a

significant achievement in computing as adders are often

viewed as the basic building block of any arithmetic unit (AU)

and consequently even some more complex operations, like

multiplication and division, may run faster. Thus SDNSs seem

suitable for digital signal processing, image processing and

cryptography.

Even after the OSDNS many other SDNSs have

come into existence with broader areas of applications.

Generalized SDNS (GSDNS) [7] may be viewed as a super-

class of OSDNS. For GSDNS DS = {�̅�, �̅� +
1, . . , 1̅ , 0, 1, . . , 𝛽 − 1, 𝛽} where α ≥ 0, β ≥ 0 and α + β + 1 > r.

The redundancy index of GSDNS is defined as: 𝜌 = 𝛼 + 𝛽 +
1 − 𝑟 . Obviously the radix-4 SDNS with DS =

{3̅, 2̅ … ,0,1, . ,3} is more redundant compared to the radix-4

SDNS with DS = {2̅, 1̅, … ,0,1, . ,2}. A class of SDNS, called

binary SDNS (BSDNS) works on the DS }1,0,1{ and it seems

to be one of the widely investigated classes of SDNDS.

Recently another class of SDNS, called canonical SDNS

(CSDNS) has got a lot press [5].

For realizing the SDNS in hardware some mappings

from its unconventional digits to binary strings are needed.

For BSDNS two widely used encoding techniques are

positive-negative encoding (PNE) and two’s-complement

encoding (TCE) ([5], [20]). In PNE the binary signed-digits

(BSDs) 1̅, 0 and 1 are encoded as 01, 00 and 10 respectively.

On the other hand, in TCE the BSDs 1̅, 0 and 1 are encoded as

11, 00 and 01 respectively. For the higher-radix SDNSs

(HRSDNSs) TCE may be extended. For instance, for radix-4

OSDNS the signed-digits (SDs) 3̅, 2̅ , 1̅, 0, 1, 2, 3 of its DS may

be encoded as 101, 110, 111, 000, 001, 010, 011 respectively.

Some other notable features of SDNSs include

regularity in designing arithmetic circuit, low power

consumption for performing some operations and fault-

tolerance.

SDNSs offer regularity owing to its ability to perform

the different stages of any multi-stage operation using the

similar-looking arithmetic equations (AEs) and obviously

employing look-alike hardware [5].

Recently the demand for low-power consuming

arithmetic circuits has increased drastically. This is not only to

support the increasing fabrication density of the IC, but also

ensuring greater portability. However, speed and power often

appear as two conflicting parameters and a trade-off needs to

be maintained. Even though SDNSs are basically introduced

for high-speed, it may be able to support low-power

computing too. Research has shown that binary signed-digit

(BSD) adder may consume less power compared to the

traditional two’s-complement (TC)-adder [21]. In the

literature, employing SDA some other AOs consuming low-

power are also known, including addition, multiplication and

division ([22]-[24]).

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

95

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

For SDNSs the carry/borrow propagation is restricted

and so the effect of any fault at some positional digit tends to

be localized, leading to achieve more fault-tolerance in AUs

[25].

In the primitive form SDNSs do not support the

floating-point computations. However, unless addressing

floating-point issues no stand-alone processor may be

designed. Recently some variants of SDNSs have been

introduced for allowing floating-point computations ([26]-

[27]).

2.4. REALIZING ON-LINE ADDER FOR HIGHER-

RADIX

The problem of designing on-line adder, particularly,

may be solved employing OSDNSs at ease. This is because, in

that case as shown in Algorithm 2, the sum-digit resulted at ith

iteration is refined and settled at (i+1)th iteration using the

incoming carry available at that iteration.

Figure 4: An OLA Adder for Higher-Radix

2.5. REALIZING ON-LINE SIGN-DETECTOR

Obviously no further revision is required during the

subsequent iterations. The computational delay of a n-digit

online adder is given by the delay caused by (n+2) full adders.

The schematic diagram for ith iteration of an OLA adder for

radix>2 is shown is Fig. 4.

Sign-detector may act as the kernel of some AUs

employing SDNSs [28]. The sign of a sign-digit number

(SDN) is evident from the sign of its MS non-zero digit.

Unlike to the complex SDTN process in the traditional SDA

[29], OLA provides a simple, straightforward solution of the

SDTN problem. For a radix-r SDN A=An-1An-2.......A0, an

OLAA for SDTN, Algorithm 3, is presented as follows:

Algorithm 3

a) Initialize: i=n-1, PA=0

b) Set: Ei = sign (Ai)

c) Compute: PA = PA ø Ei

Where X ø Y represents sign of X if X≠0 and otherwise it

represents the sign of Y.

d) Do:

i. Set: i=i-1

ii. If (i≥0) Go to step (b)

 iii, Otherwise,

 Output: PA

 Exit

3. DESIGNING ON-LINE COMPARATOR

FOR HIGHER-RADIX
For any two (signed or unsigned) numbers, X and Y,

as X2 – Y2 = (X+Y). (X-Y), if the sign of either (X+Y) or (X-

Y) is zero then |X|=|Y|. Otherwise, if the signs of (X+Y) and

(X-Y) agree then |X|>|Y| holds true and if the signs of (X+Y)

and (X-Y) disagree then |X|<|Y| holds true. Thus for any NS,

MCN may be interpreted in terms of additions/subtractions

and SDTNs and some comparator may be designed in a

straightforward manner. Further thanks to the constant-time

addition/ subtraction property of SDNS, the time complexity

characteristics of both MCN and SDTN are the same [12]. As

shown in sub-section 2.4 in OSDNS for any two signed-digit

number (SDN)-input the sum/difference and carry-out/

borrow-out at/from any position during addition/ subtraction

depends only the immediate lower-significant digits, besides

those particular positional digits and so digit-serial output may

be efficiently generated from MS-to-LS position. In addition

SDTN may be circulated digit-serially from MS-to-LS

position as presented in the sub-section 2.4. Thus proceedings

towards a simple OLMCR design may be possible with

efficacy as well as efficiency.

In the regard, for processing the following notations

are used with respect to ith position ∀ i ϵ [-1, n] where n is the

number of input digits:

Pi means pre-intermediate sum

Qi means pre-intermediate difference

Ci means carry-out

Bi means borrow-out

Sʹi means intermediate sum

Dʹi means intermediate difference

Si means actual sum

Di means actual difference

Ei sign-information of Si

Fi sign-information of Di

PE means sign-information of SDN SnSn-1....Si+1

PF means sign-information of SDN DnDn-1....Di+1

 Xi

 ↕

 +Yi

 = Pi

 ↓

 Ci ↓

+ Sʹi+1
--------- Sʹi

 = Si+1 ↓

Computations

in (i+1)th

iteration

↓ ↓

Computations

in (i-1)th

iteration

↓ ↓

Computations

in (i-1)th

iteration

↓ ↓

Computations

in (i-2)th

iteration

↓ ↓

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

96

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

Where all of Ei, Fi, PE and PF are assumed to represent

positive, zero and negative signs by 1, 0 and 1̅ respectively,

employing some standard 2-bit encoding as discussed in sub-

section 2.3. Consider an OSDNS defined on radix r (>2) and

DS {�̅�, �̅� + 1, … … . … , 1̅ , 0, 1, … … … . . . , 𝛼 − 1, 𝛼}

where
𝑟

2
< α < r. Let X = Xn-1Xn-2..........X0 and Y = Yn-1Yn-

2..........Y0 be two numbers of the NS. Then an OLMC-

algorithm, algorithm 4, is proposed as follows:

Algorithm 4:

a. Set: X-1 = 0, Y-1 = 0, Sʹn = 0, Dʹn = 0, PE = 0 and PF = 0

b. For i = n–1 down to 1̅ compute step i through vii:

 𝑖. 𝑃𝑖 = 𝑋𝑖 + 𝑌𝑖 , 𝑄𝑖 = 𝑋𝑖 + 𝑌�̅�

 1, if Pi ≥ α

ii. Ci = 0, if |Pi|< α

 1̅, if Pi ≤ �̅�

 1, if Qi ≥ α

 Bi = 0, if |Qi|< α

 1̅, if Qi ≤ �̅�

iii. Sʹi = Pi – r.Ci, Dʹi = Qi – r.Bi

iv. Si+1 = Sʹi+1 + Ci, Di+1 = Dʹi+1 + Bi

v. Set: Ei+1 = sign (Si+1) and Fi+1 = sign (Di+1)

vi. Define PE and PF as:

 PE = PE ø Ei+1, PF = PF ø Fi+1

 Where K ø L represents sign of K if K≠ 0

 and otherwise it represents sign of L.

vii. M = PE. PF

c. If (PE = 0) or (PF = 0) then |X| = |Y|

Otherwise, if (M = 1) then |X| > |Y|

 Else |X| < |Y|.

Computations at ith iteration are shown in Fig. 5 as the shaded

region where the symbols may be interpreted as per

algorithmic operations.

Fig. 5: Computations in ith iteration

4. RESULTS AND DISCUSSION
For the sake of clarifying its step-by-step operations,

at first, the proposed algorithm, algorithm 4, is to be tested on

some higher-radix input. For example, consider, two radix-4

ordinary SDNs, X and Y where X = 121̅01, Y=1̅02̅1̅1̅. The

iterative computations for MCN of X and Y are presented in

table 1.

Table 1: MCN of X and Y as an Example

Iterations (i) → 4 3 2 1 0 �̅�
Temporaries↓

Pi 0 2 3̅ 1̅ 0 0

Qi 2 2 1 1 2 0

Ci 0 1 1̅ 0 0 0

Bi 1 1 0 0 1 0

Sʹi 0 2̅ 1 1̅ 0 0

Dʹi 2̅ 2̅ 1 1 2̅ 0

Si+1 0 1 3̅ 1 1̅ 0

Di+1 1 1̅ 2̅ 1 2 2̅

Ei+1 0 1 1̅ 1 1̅ 0

Fi+1 1 1̅ 1̅ 1 1 1̅

PE 0 1 1 1 1 1

PF 1 1 1 1 1 1
M 0 1 1 1 1 1

Therefore |X| > |Y| which is obviously holds true.

The CAA presented in this paper may be

conceptually extended for GSDNS, obviously including

BSDNS. However, the addition/ subtraction rules for BSDNS

(in broad sense for GSDNS) are known to be fairly complex

([5], [7]). So the direct scaling of the OLMCR presented in

this paper may be inapplicable beyond the OSDNS owing to

possibly large area, delay and power requirements.

5. CONCLUSION
MCR design is a complex problem for any mode of

computing, conventional or unconventional. Even in the

existing literature of OLA no report is available on designing

MCR. In this paper, a simple and efficient OLMCR for

higher-radix is proposed on the basis of interpreting MCN in

terms of additions/subtractions and SDTNs [12] as well as

circulating the input/ output-digits of both SD-

addition/subtraction and SDTN serially from MS-to-LS

position. Consequently in OLA platform MCN may also be

pipelined with other CA operations, leading to achieve faster

processing speed as a whole. The future work of the author

would be investigating OLMCR using BSDNS.

REFERENCES

[1] K.S. Trivedi, M.D. Ercegovac, "On-Line Algorithms

for Division and Multiplication", IEEE Transactions on

Computers, vol. C-26, no.7, 1977, pp. 681-687.

 Xi Xi

 ↕ ↕

 + Yi -Yi

 ---- ----

 = Pi = Qi

 ↓ ↓

 Ci Bi

 ↓ ↓

+ Sʹi+1 Dʹi+1 Sʹi Dʹi

 ------ ------

 = Si+1 = Di+1

 ↓ ↓

 Ei+1 Fi+1

 ↓ ↓

 PE PF

 ↓

 M

Computations

in (i+1)th

iteration

 ↓ ↓

Computatio

ns in

(i-1)th

iteration

 ↓

Computa

tions in

(i-1)th

iteration

↓ ↓

Computa

tions in

(i-2)th

iteration

 ↓

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

97

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

[2] M.D. Ercegovac, "On-Line Arithmetic: An

Overview", in Proceedings of Proc.SPIE0495, Real-

Time Signal Processing VII, 1984, pp. 86-93.

[3] M.D. Ercegovac, "On Left-to-Right Arithmetic", in

Proceedings of 51st Asilomar Conference on Signals,

Systems and Computers, 2017, pp. 750-754.

[4] A. Avizienis, “Signed Digit Number Representations

for Fast Parallel Arithmetic,” IRE Transactions on

Electronic Computers, vol. EC-10, no. 3, 1961, pp.

389-400.

[5] I. Koren, Computer Arithmetic Algorithms, 2nd Edition,

A.K. Peters Ltd., Natick, MA, 2002.

[6] M.D. Ercegovac, T. Lang, Digital Arithmetic, Morgan

Kaufmann Publishers, 2004.

[7] B. Parhami, “Generalized Signed-Digit Number

Systems: A Unifying Framework for Redundant

Number Representations”, IEEE Transactions on

Computers, vol. 39, 1990, pp. 89-98.

[8] Y. Zhao, J. Wickerson, G. A. Constantinides, "An

Efficient Implementation of Online Arithmetic", in

Proceedings of Intl. Conf. on Field-Programmable

Technology (FPT), 2016, pp. 69-76.

[9] A. Tisserand, P. Marchal, C. Piguet, “An On-Line

Arithmetic Based FPGA for Low-Power Custom

Computing”, in Proceedings of Workshop on Field

Programmable Logic and Applications, UK, 1999,

pp.264-27.

[10] S. Veeramachaneni, M.K. Krishna, L. Avinash, R.P.

Sreekanth, M. B. Srinivas, "Efficient Design of 32-bit

Comparator using Carry Look-Ahead Logic", in

Proceedings of IEEE Northeast Workshop on Circuits

and Systems (NEWCAS), 2007, pp. 867-870.

[11] S. Kumar, C-H. Chang, T.F. Tay, “New Algorithm for

Signed Integer Comparison in {2n+k, 2n-1, 2n+1, 2n+1-1}

and Its Efficient Hardware Implementation”, IEEE

Transactions on Circuits and Systems, vol. 64, issue 6,

2016, pp. 1481-1493.

[12] M. S. Chakraborty, A. C. Mondal, S. K. Sao, “Towards

Relating Some Methods of Signed-Digit Arithmetic”,

Chapter 7, Advances in Mathematical Sciences, ISBN

978-93-8643-44-6, Edited by Department of

Mathematics, St. Thomas College, Thrissur: India,

2018, pp. 47-54.

[13] T. Lynch, M.J. Schulte, “A High-Radix On-Line

Arithmetic for Credible and Accurate Computing”, The

Journal of Universal Computer Science, vol. 1, no. 7,

1995, pp. 439-453.

[14] R. Hartley and P. Corbett, “Digit-Serial Processing

Techniques. IEEE Transactions on Circuits and

Systems”, vol. 37, no. 6, 1990, pp.707-719.

[15] M. J. Irwin and R. M. Owens, “Digit-Pipelined

Arithmetic as Illustrated by the Paste-Up System: A

Tutorial”, Computer, vol. 20, no. 4, 1987, 61-73.

[16] K. Shi, D. Boland, and G. A. Constantinides, “Efficient

FPGA Implementation of Digit Parallel Online

Arithmetic Operators”, in Proceedings of Intl.

Conference on FPT, China, 2014.

[17] K. Shi, D. Boland, E. Stott, S. Bayliss and G. A.

Constantinides, “Datapath Synthesis for Overclocking:

Online Arithmetic for Latency Accuracy Trade-Offs”,

in Proceedings DAC, USA, 2014.

[18] W. G. Natter and B. Nowrouzian, “Digit-serial Online

Arithmetic for High-Speed Digital Signal Processing

Applications”, in Proceedings of 35th Asilomar Conf.

On Signals, Systems and Computers, 2001, pp. 171-

176.

[19] M. Dimmler, A. Tisserand, U. Holmbeg, and R.

Longchamp. “On-Line Arithmetic for Real-Time

Control of Microsystems”, IEEE/ASME Transactions

on Mechatronics,, vol. 4, no. 2, 1999, pp. 213-217.

[20] M. S. Chakraborty, “Reverse Conversion Schemes for

Signed-Digit Number Systems: A Survey”, Journal of

Institution of Engineers (I): Series B, Vol. 97, 2016, pp.

589-593.

[21] K. G. Smitha, A. H. Fahmy, A. P. Vinod, “Redundant

Adders Consume Less Energy”, in Proceedings of

IEEE APC on Circuits and Systems, Singapore, 2006,

pp. 422-425.

[22] D. Crookes, M. Jiang, “Using Signed Digit Arithmetic

for Low Power Multiplication”, Electronics Letters,

2007, pp. 13-14.

[23] D. S. Phatak, S. Kahle, H. Kim, J. Lue, “Hybrid Signed

Digit Representation for Low Power Arithmetic

Circuits”, in Proceedings of Low Power Workshop in

Conjunction with ISCA, Barcelona: Spain, 1998.

[24] H. R. Srinivas, K. K. Parhi, “A Radix 2 Shared

Division/Square Root Algorithm and Its VLSI

Architecture”, Journal of VLSI Signal Processing

Systems for Signal, Image and Video Technology, vol.

21, 1999, pp. 37-60.

[25] G. C. Cardarilli, S. Pontarelli, M. Re, A. Salsano,

“Fault Tolerant Design of Signed-Digit based FIR

Filters”, in Proceedings of IEEE International

Symposium on Circuits and Systems, Greece, 2006, pp.

2809-2812.

[26] S. Venkatachalapathy, Signed Digit Representation of

Numbers, M. S. Dissertation, Oregon State University:

USA, 2006.

[27] A. Kaivani, S. Ko, “Floating Point Butterfly

Architecture Based on Binary Signed Digit

Representation”, IEEE Transactions on Very Large

Scale Integration, vol. 24, 2016, pp. 1208-1211.

[28] M. S. Chakraborty, A Study of Reverse Conversion

Algorithms for Signed-Digit Number Systems, Ph. D.

Thesis, The University of Burdwan: India, 2019.

[29] T. Srikanthan, S. K. Lam, M. Suman, “Area-Time

Efficient Sign-Detection Technique for Binary Signed-

Digit Number System”, IEEE Transactions on

Computers, Vol. 53, 2004, pp. 69-72.

©2012-20 International Journal of Information Technology and Electrical Engineering

ITEE, 9 (4), pp. 92-98, AUG 2020 Int. j. inf. technol. electr. eng.

98

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 4
August 2020

AUTHOR’S PROFILE

Dr. Madhu Sudan Chakraborty holds Master of Computer

Applications degree (N.I.T, Jamshedpur, India) and Ph. D.

(Burdwan University, India). He has been serving as an Asst.

Professor (Sr. Level) of Computer Science at Indas

Mahavidyalya, Bankura, WB, India-722205, since 2007. He is

a member of IEEE and IAENG. His thrust area is theoretical

computer science, including computer arithmetic. He has to

his credit several publications in reputed national/international

journals, conference proceedings and book chapters, including

those belong to IEEE and Springer.

