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ABSTRACT 
 
The rotational motion of quadcopters is referred to as attitude control. It is a high energy consuming task. We propose using 

deep reinforcement learning to automate the attitude control process. We test the performance of two deep reinforcement 

learning algorithms Proximal Policy Optimization (PPO) and Deep Deterministic Policy Gradients (DDPG) on the reward 

function designed to prioritize minimization of energy consumption. Since the moving parts of the quadcopter are only the 

motor/propellers, hence they consume the maximum energy and our reward function is created to optimize their movements. 

Our simulations using DDPG and PPO on an Open AI Gym environment show that PPO performs better in our energy 

optimization problem. 

 
Keywords: attitude control, quadcopters, reinforcement learning, energy efficiency, proximal policy optimization, deep deterministic policy 

gradients

 
1. INTRODUCTION 
 

Quadcopters, a class of Unmanned Aerial Vehicles 

(UAVs), are finding uses in tasks like parcel deliveries, aerial 

photography, relief in disaster affected areas, surveillance, etc. 

UAVs can be either fixed wing or multirotors. Given the 

advantages of multirotors like the ability to hover, they have 

been researched more than fixed wing UAVS. Quadcopters is 

a class of multirotors having four wings/motors. Other 

variations include six motors, eight motors, etc. However, 

their capability of carrying weight is much restricted as 

compared to fixed wing UAVs. Batteries, the source of energy 

to a quadcopter, are a major portion of its weight. Thus, 

minimizing the energy depletion is a critical requirement to 

enhance the flight duration of a quadcopter. There are six 

degrees of freedom to a quadcopter - three rotational defined 

by the three axes in which a quadcopter can rotate and three 

translational defined by the motion from one place to another 

in the 3D space.   

 
Fig. 1 Quadcopter's Roll, Pitch & Yaw Movements [1] 

 

This movement, rotational or translational or both, is 

brought about by the rotors which are the only moving parts 

of a quadcopter. Altering the speed of the four rotating motors 

brings about the change in its position. 

 

The angle at which a UAV flies relative to the ground 

is known as its attitude. The three axes of rotation of a 

quadcopter are the roll, pitch and yaw. Roll is the rotation 

about its longitudinal axis. When the quadcopter rotates 

laterally, it is called the pitch while yaw is the rotation when a 

quadcopter rotates in the clockwise or anticlockwise direction 

while remaining level to the ground. (Refer to Fig. 1). 

 

Managing the rotation of the roll, pitch and yaw axes 

controls the overall quadcopter rotation and is called attitude 

control. Thus, a change in attitude simply requires changing 

the rotational speeds of the motors. Following a set pattern or 

combination in terms of the speeds of the individual motors 

can result in achieving attitude control. Now, this speed of 

rotation of the motors can be either managed by a human 

(which is an expensive proposition) or can be fed into the 

system from the start (which makes the system non robust and 

unable to adapt to environmental changes). The disadvantages 

of each of the above methods bring us to the novel idea of 

harnessing the ability of artificial intelligence in governing the 

quadcopter's movements. 

 

We propose the use of Deep Reinforcement learning, a 

branch of artificial intelligence, for achieving attitude control 

while minimizing energy consumption in quadcopters. 

Reinforcement learning is a technique where objects learn 

from experience. The different components that make up a 

quadcopter include a flight controller, radio receiver, battery, 

and four arms. Each of the arms has an Electronic Speed 

Controller (ESC), motor and a propeller. The flight controller 

is made up of the Global Positioning System, Inertial 

Measurement Unit (IMU) while the IMU is itself made up of 

the Gyroscope, Magnetometer, Accelerometer, etc.  
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The Gyroscope records the roll, pitch and yaw values 

and hence our study shall be focused on it. Each of the ESCs 

passes the speed instructions to their respective motors driving 

the propellers. Thus, the ESCs dictate the rotational speeds 

and manage the attitude which is then measured by the 

Gyroscope.  

 

In reinforcement learning, there is a problem with a set 

of probable solutions to that problem [2]. Reinforcement 

learning algorithms are designed to select one action out of 

the available options in order to maximize the output. 

Reinforcement learning maps situations to actions so as to 

achieve the best reward. Using deep reinforcement learning, 

deep neural networks are used to create an understanding of 

the world and then act upon it. The learning takes place 

through experience, i.e. the system is not trained by a human. 

Reinforcement learning is a closed loop technique where the 

output of one step becomes the input of the next. It is used in 

problems where the entire task is divided over multiple steps 

and decision making takes place sequentially. 

 

Our contribution, in this research, can be broadly stated 

as: - 

 

1. Selecting our Energy Efficient Attitude Control (EEAC) 

algorithm and applying it on quadcopter attitude control using 

an Open AI Gym environment. 

2. Applying Deep Deterministic Policy Gradients (DDPG) 

and Proximal Policy Optimization (PPO) on the quadcopter 

attitude control problem. 

3. Comparing the performances of both the techniques and 

displaying the results. 

 

2. RELATED WORK 
 

 Across the literature, attitude control has been 

handled as a standalone problem or along with navigation 

control. We, first, discuss some papers tackling attitude 

control alone. 

 

 Pitch control has been tested by Jiang et al. [3] by 

implementing Aggregated Multi Reinforcement Learning. 

Alexis et al. [4] consider the influence of wind and other 

factors. The effect of drag and thrust are considered. [5] maps 

sensory data into motor velocity values. A deterministic, on-

policy approach has been used. Lambert et al. [6] make 

changes in firmware, model adaptations and system design to 

deal with system and dynamic limitations.  

 

 Next, we shall discuss papers where attitude control 

is dealt as an inner loop and navigation control as the outer 

loop of the entire problem. Abbeel et al. in [7] use a hybrid 

algorithm on an approximate model. Real world scenarios are 

used to test the policy. A two host methodology is the 

approach used by Santos et al. in [8] where one host runs 

control loops and the other host runs the robot model. A 

Proportional Derivative equation is used to link linear 

acceleration and attitude control in [9]. TEXPLORE 

implements decision trees and forests to create learned models 

in [10]. 

 Rodriguez-Ramos et al. [11] implement vision based 

landing using cameras, sensors and Inertial Measurement 

Units (IMUs). Li et al. [12] suggest a comprehensive 

reinforcement learning algorithm that is quarternion based. In 

[13], Nie et al. propose pitch angle in terms of velocity of 

quadcopter. AirSim's Woodland package has been used in 

[14] with two convolutional neural networks. In [15], a two 

step approach is deployed in which the weight of the centre of 

quadcopter and its inertial matrix is considered while 

calculating attitude control. In [16], Bekal et al. use Deep 

Deterministic Policy Gradients (DDPG) for pitch control and 

Proportional Integral Derivative (PID) controllers for roll and 

yaw. In [17], Proximal Policy Optimization (PPO) is used. 

Zhou et al. [18] present attitude control in mathematical terms 

implementing feedback linearization and using different 

channels for pitch, roll and yaw. 

  

The rest of the paper is organized as follows: Section 3 

details the terms used in our work. Section 4 is dedicated to 

the implementation details. In section 5, we evaluate our 

experiments and display results while the last section is used 

for the conclusion remarks. 

 

3. METHODOLOGY 
 

 Here, we discuss the ideas employed in this research 

along with the terms used. 

 

 
Fig. 2 Interaction between agent and environment in Reinforcement 

learning [19] 

 
3.1 Terms used in Deep Reinforcement Learning 

 
3.1.1 Agent(Fig. 2) 

 

The agent is the heart of the deep reinforcement 

learning process. It is the neural network consisting of an 

input layer, an output layer and multiple hidden layers. A 

layer consists of nodes called neurons and has an activation 

function [2]. 

 
3.1.2 Action 

 

Depicted by 𝐴𝑡 ∈ 𝒜(𝑆𝑡), action is the output of the 

agent. (𝑆𝑡)denotes one of the states of the environment and is 

discussed later. The action may be an action value function 

(𝑞π(𝑠, 𝑎)) or a state value function (𝑣π(𝑠)). The value function 

defines how good an action or state is. The agent, at each step, 

creates a mapping between states and the probabilities of 

selecting an action. This mapping is called the policy. 
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3.1.3 Policy 

The policy is denoted by 𝜋𝑡 or 𝜋𝑡(𝑎|𝑠), implying that 

𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠. A policy is: - 

 

 Deterministic: 
Deterministic policies have a single action for a state. 

It is possible in environments having no uncertainty.   

𝜋𝑡(𝑠) = 𝑎𝑡 
 

 Stochastic: 
Used in uncertain environments, stochastic policies 

have a probability distribution over actions.  

𝜋𝑡(𝑎|𝑠) = 𝒫(𝑎𝑡|𝑠𝑡) 
 

3.1.4 Environment: 
 

Anything external to the neural network is the 

environment. The agent interacts with it by sending the action 

and receiving the response. The quadcopter is the 

environment, in our case.  
 

3.1.5 State: 
 

It is the condition the environment is in. It forms the 

input of the agent. 
 

3.1.6 Reward: 
 

The reward is a number returned by the environment as 

a response to the agent's input. The agent tries to maximize 

the value of the reward at the end of the process. The reward 

is a function of the action taken by the agent and the current 

state of the environment. 

 

The agent, depending on its representation of the state 

and the reward, creates a model. 
 

Reinforcement learning algorithms are of two kinds. 
 
Model based: 

 

The agent estimates a model of the environment and 

decides the future plan based on how its actions change the 

environment. Model based approaches are very sample 

efficient. It is used in reinforcement learning algorithms used 

in playing games like Chess, Go, etc. 
 
Model free: 

 

Here, the model of the environment is not created. 

Such reinforcement learning algorithms can be: 

 Value Based:  
 

Here, value based agents decide the goodness of an 
action performed at a given state and that model is used to 

behave optimally. Value based agents do not learn the 

policy, instead they focus on how good a state is and 
depending on that, select a policy. This method is adopted 

only in the case of deterministic policies. 

 

 Policy Based: 

The policy function, that maps states and actions, is 
learnt. The action is learnt without focusing on the value 

function. This method can be used in stochastic policies 

as well. 
 

3.2 Discrete and continuous action spaces 

 

There are certain areas where reinforcement learning 

algorithms have given astonishing results. Computer games, 

Go and Chess are some of the problems solved effectively 

using Deep Q Network (DQN) algorithm [20], [21] and [22]. 

DQN is useful to solve problems having discrete action spaces 

and low dimensions. The problem of attitude control is high 

dimensional and works in a continuous action space. Lillicrap 

et al. in [23] gave Deep Deterministic Policy Gradients 

(DDPG), a landmark algorithm applying the concept of DQN 

on continuous control problems.  
 

3.3 Policy gradient 

 

Policy gradient approach is used in on-policy 

problems. The policy space is optimized so that actions that 

give higher rewards have a better probability of being selected 

and actions that lead to low rewards are rarely performed. The 

policy network takes the environment's space as the input and 

outputs an estimate of the different actions' probabilities. 𝐽(θ), 

the expected reward, is the product of the probability of 

trajectory and the corresponding reward. 
 

 𝐽(𝜃) = ∑ 𝒫

𝜏

(𝜏; 𝜃)𝑅(𝜏)  

 

where θ denotes the policy employed to create trajectory τ, 

and 
τ = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑡 , 𝑎𝑡) 

 
Now, a value of θ for maximizing the reward. 
 

max
𝛳

𝐽(𝜃) = max
𝛳

∑ 𝜏 𝒫(τ; θ)𝑅(τ) 

 

Since policy gradient approaches directly learn the 

policy, they work in complex environments where DQN 

approaches fail. They converge faster and can learn stochastic 

policies, a place where value based approaches fail. They are 

also effective in continuous action spaces.  

 

However, they are very unstable and not sample 

efficient. In case rewards are delayed, their credit assignment 

is also poor. As newer policy gradient techniques are 

proposed and researched, we have to avoid actions that lead to 

less optimal results as one wrong decision affects the 

remaining process of optimization. 
 

3.4 Role of IMU and ESC 

 

For the implementation of EEAC on PPO and DDPG, 

we have relied on Open AI Gym environment which provides 
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the set of environments for testing reinforcement learning 

algorithms. We have used GymFC, an Open AI Gym based 

flight controller environment. As is the standard, it has an 

action space and an observation space. The action space 

consists of the reinforcement learning algorithm's instructions 

to the quadcopter while the observation space is the output of 

the quadcopter which is received by the agent. 

 

A component called Gyroscope within the Inertial 

Measurement Unit (IMU) records and sends the angular 

velocity 𝜎(𝑡) of the quadcopter at each step. 𝜎(𝑡) =

[𝜎𝜙(𝑡), 𝜎𝜃(𝑡), 𝜎𝜓(𝑡)] where 𝜎𝜙(𝑡), 𝜎𝜃(𝑡) 𝑎𝑛𝑑 𝜎𝜓(𝑡) are the 

angular velocities of each of the roll, pitch and yaw axes. The 

Electronic Speed Controllers (ESCs) record the speed of 

rotations of the four motors 𝜇(𝑡) =
[𝜇0(𝑡), 𝜇1(𝑡), 𝜇2(𝑡), 𝜇3(𝑡)] 
where 𝜇0(𝑡), 𝜇1(𝑡), 𝜇2(𝑡) and 𝜇3(𝑡) are individual motor 

speeds measured in Revolutions per Minute (RPMs). When 
the agent receives these values, it applies the reinforcement 

learning algorithm to come up with a response which consists 

of Pulse Width Modulation (PWM) signals 𝑎(𝑡) =
[𝑎0(𝑡), 𝑎1(𝑡), 𝑎2(𝑡), 𝑎3(𝑡)]. These instructions are sent to the 

ESCs. 
 

3.5 Neural Networks 

 

The function of the agent where it takes a state as input 

and provides an action as the output can be represented in the 

form of a table where the x axis represents possible actions 

and y axis denotes the set of states. The cells of the table 

would denote the received reward. The reinforcement learning 

algorithm updates this table at each step while following a 

policy. However, multi-dimensional problems in continuous 

spaces cannot be represented in a table of viable size as the 

number of possibilities are many. Hence, the need of deep 

reinforcement learning. The deep part is constituted by the 

neural network consisting of an input and output layer along 

with multiple hidden layers. The purpose of the neural 

network is to sum together all the information that has been 

accessed by the agent in the past and use it to come up with 

information that is useful for the task to be done. The agent 

gets trained in this process to act in a real world scenario. 
 

3.6 Layers and activation function 

 

Each of the layers of the neural network has nodes 

called neurons and it is the place where the computation takes 

place (Fig. 3). The neurons are such called because they 

mimic the behaviour of the neurons of the human brain which 

perform an action when triggered by a stimulus of sufficient 

proportion. 

 

A neuron takes the product of the input xi and the 

weight wi. The weight magnifies or reduces the input, 

depending on the amount of significance each input needs to 

be given. The sum of all such products is then sent through an 

activation function 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖), which decides whether to 

allow or disallow a signal to pass through. Commonly used 

activation functions are Tanh, ReLU, Sigmoid, etc. 

 
 

 
Fig. 3 (a) A neuron 3 (b) A neural network having multiple 

layers [24]} 
 

3.7 Deep Deterministic Policy Gradients (DDPG) 

 

Q learning or DQN cannot handle continuous action 

spaces. It  outputs only a discrete number of actions. 

However, we need continuous action spaces as the PWM 

commands have to be sent by the agent to the ESCs. It is 

inappropriate to discretize the continuous action spaces as the 

six degrees of freedom of the quadcopter would lead to too 

many discrete action spaces. 
However, innovations to Q learning can be applied to the actor 

critics methods. In DDPG [23], we use 

 
Replay Memory 

 

Instead of learning just from the current state the agent 

is experiencing, it keeps track of the total of all experiences 

and randomly samples some batch of memories to update the 

weights of the deep neural networks. 
 
Target Network 

 

Use one network to determine the actions to take and 

then use another network to determine the value of that action. 

That value is used to update the weights of the deep neural 

networks. When we use the same network to do both the 

things, we are chasing a rapidly changing target because the 

weights are getting updated. So, the valuation of similar states 

changes rapidly over the course of simulation, causing the 

learning to be unstable. So, we use two networks - one to 

choose actions at each timestep and the other to evaluate the 

effectiveness of those actions while updating the weights. 
 

DDPG is off policy, i.e. we use a separate policy to get 

the data and use the data to update a different policy, 
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performing a soft copy of the target networks. We have two 

target networks in DDPG because DDPG is an actor critic 

method. So there are two distinct networks, one for the actor 

and one for the critic. So, overall we will have four networks - 

one actor, one critic, one target actor and one target critic. The 

critic network evaluates state action pairs. The actor network 

decides what to do based on the current state. The actor 

network outputs action values and not probabilities. This is 

because DDPG is deterministic, hence the algorithm leads to 

the same state over and over again and we get the same action 

from the agent. However, the problem with this approach is 

that the agent has an explore-exploit dilemma. It aims to 

understand the environment by exploration or try to follow a 

chosen path by exploiting the achieved knowledge. This is 

implemented in DDPG by including noise into the system.  
 

The update rule for the actor is denoted by the equation [23] 
below. 

 

𝛻𝜃𝜇𝐽 ≈ 𝐸𝑠𝑡∼𝜌𝛽 [𝛻𝜃𝜇𝑄(𝑠, 𝑎|𝜃𝑄)|
𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇

)] 

 

 

The above equation shows the expectation value or the 

average of the gradient of the critic network, where we input 

some states and actions and the action is chosen based on the 

current policy. So, we sample states randomly from the 

memory and then the actor network decides what actions to 

take based on those states. Then the actions and states from 

the actor are plugged into the critic to take its reaction on the 

quality of the actions. We, then take the gradient of the critic 

network with respect to the parameters of the actor network 
Updating the critic network by minimizing the loss 
 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃𝑄))

2

𝑖

 

 

𝛻𝜃𝜇𝐽 ≈
1

𝑁
∑ 𝛻𝑎

𝑖

𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)𝛻𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖
 

 
 

The loss function is a mean squared error of the 

difference between target value 𝑦𝑖  and the Q for the current 

state and action. We randomly sample states, new states, 

actions and rewards. We use the target actor to determine 

actions for the new states. The actions are plugged into the 

target critic to get the target y and multiply it with the discount 

factor 𝛾 and add a reward of that timestep. We then plug the 

states and actions into the critic and take the difference with 

the target.  
 

In order to handle the updates of the target networks, 

the actor and critic networks are initialized with some random 

parameters and the same values are copied to the target actor 

and critic networks also. This is the only instance of a hard 

copy. The rest of the time, a soft copy is done to update the 

target. 
 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 

 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 

3.8 Proximal Policy Optimization (PPO) 

 

PPO is an on-policy technique, so the agent learns 

directly from its interactions with the environment. It is also 

based on policy gradient. Just like DDPG, PPO also uses the 

actor critic approach. Here, the actor network is policy based 

while the critic is value based.  
 

In PPO [25], policy gradient loss is defined as the 

average(expectation) of the log of policy multiplied by the 

advantage function.  
 

𝐿𝑃𝐺(𝜃) = 𝐸�̂�[𝑙𝑜𝑔 𝜋𝜃 (𝑎𝑡|𝑠𝑡)𝐴�̂�] 
 

The advantage function is a measure of the goodness of 

an action. It compares the current action with the average 

action. The discounted set of rewards provide the baseline 

estimate for the advantage function.  
 

𝐴�̂� = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1 
 

𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) 
 

A positive advantage function increases the probability 

of performing a given action when a particular state is 

observed. The problem with this approach is that if we keep 

on running gradient descent on a particular batch of states, we 

might go out of range and get practically incorrect results. So, 

the aim is to make small changes. Trust Region Policy 

Optimization (TRPO) [26], a predecessor to PPO, added KL 

constraint (Kullback-Leibler). PPO improves this technique 

by adding a constraint to the optimization objective directly.  
 

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸�̂�[𝑚𝑖𝑛(𝑟𝑡(θ)𝐴�̂� , 𝑐𝑙𝑖𝑝(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴�̂�)] 
 

In PPO, a value function error is added to the policy 

function. In order to promote exploration, an entropy bonus 

has been added.  
 

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(θ) = 𝐸�̂�[𝐿𝑡

𝐶𝐿𝐼𝑃(θ) − 𝑐1𝐿𝑡
𝑉𝐹(θ) + 𝑐2𝑆[πθ](𝑠𝑡)] 

 
Thus, PPO manages to improve the performance achieved by 

reducing the policy update values to a given range. Its simple 

objective function further reduces performance overhead. 
 

4 IMPLEMENTATION OF ENERGY 

EFFICIENT ATTITUDE CONTROL 
 

In this section, we implement our Energy Efficient 

Attitude Control (EEAC) algorithm [27] on two deep 

reinforcement learning algorithms DDPG and PPO and 

compare the results of both the approaches. We added 

Ornstein Uhlenbeck noise [28] to the action space. Noise 

facilitates better exploration by adding uncertainty.  
 

𝜋′(𝑠𝑡) = 𝜋(𝑠𝑡|𝜃𝑡
𝜋) + 𝒩 
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𝜋′(𝑠𝑡)denotes the exploration policy obtained when noise 𝒩is 

added to the policy𝜋(𝑠𝑡|𝜃𝑡
𝜋). To facilitate better exploration, 

temporally correlated noise has been used. Parameters used 

are 𝜃 = 0.15 and 𝜎 = 0.3 and have been kept the same in both 

DDPG and PPO. While working on the attitude control 
problem, we identified the key areas where energy was used 

the most during attitude control. The only moving parts of the 

quadcopter were the propellers and the motors driving them. 
Thus, if we had to reduce energy depletion, we would need to 

avoid running the motors at high speed. Also, the variations in 
speeds of motors needed to be minimized. Focussing on the 

energy aspect, we had written EEAC algorithm and now we 

expand the scope of the algorithm by comparing its 
performance on two of the landmark deep reinforcement 

learning algorithms - DDPG and PPO. 

 

4.1 Proposed algorithm for Energy Efficient Attitude 

Control 

 

In EEAC, we train the system to achieve a target 

angular velocity 𝜎∗ (where 𝜎∗=𝜎𝑟
∗, 𝜎𝑝

∗, 𝜎𝑦
∗ corresponding to the 

roll, pitch and yaw axes) while reducing energy consumed in 

the process. At the start of each episode, this angular velocity 

is initialized and the algorithm aims to achieve this target 

value while maximizing the reward (or, minimize a negative 

reward). The algorithm runs a loop in ordered to minimize the 

negative reward so that reward 𝑟𝑡 → 0. Inside the loop, action 

𝑎𝑡 is initialized with the output of the reinforcement algorithm 

used, with the Pulse Width Modulation values 𝑦𝑖  (where 𝑖 → 

0 to 3) for all the four motors. Thereafter, noise 𝒩is added to 

it. This action value is sent to the environment and the state 

𝑠𝑡+1 received from it. This state value consists of the present 

angular velocity and is a three-member value for each of the 

roll, pitch, yaw axes and the present RPM values of the four 

motors. The difference of the motor speed values obtained 

from the environment from two epochs is calculated and the 

average of this difference stored in 𝛥𝜇.Thereafter, the angular 

velocities received in 𝑠𝑡+1 are taken and subtracted from the 

target velocity values. The difference values of each of the 

three axes are squared, summed and the square root of the 

same stored in 𝛥𝜎. The difference between the RPM values of 

the motors and the value of angular velocity is treated as a 

penalty that needs to be minimized. The algorithm multiplies 

a constant 𝛼 to the motor velocity difference 𝛥𝜇 and then add  

Δ𝜎, the angular velocity difference. To show that it is a 

penalty, the algorithm assigns a negative sign to it, with the 
intention of minimizing it. As a last step, the current values are 

updated on the previous copy of RPM values for the next 
epoch.  

 
Algorithm 1: Energy efficient attitude control (EEAC) 

for episode:=1,....,N do 

 Initialize 𝑎𝑡, 𝜎, 𝜇; 

 Initialize the environment and receive initial state 𝑠1; 

 Initialize 𝜎∗={ 𝜎𝑟
∗, 𝜎𝑝

∗, 𝜎𝑦
∗}; 

 for timestep t:=1,....,T do 

  Generate an action 𝑎𝑡 = (𝜇0, 𝜇1, 𝜇2, 𝜇3) 

  𝑎𝑡 ← 𝑎𝑡 + 𝒩where 𝒩 is Ornstein Uhlenbeck noise 

  Send action 𝑎𝑡to the environment and receive state𝑠𝑡+1
 

𝑠𝑡+1 = {(𝜎𝑟 , 𝜎𝑝, 𝜎𝑦), (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′ )} 

𝜎 = (𝜎𝑟 , 𝜎𝑝, 𝜎𝑦) 

𝜇′ = (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′ ) 
𝛿𝜇 = (|𝜇0

′ − 𝜇0|, |𝜇1
′ − 𝜇1|, |𝜇2

′ − 𝜇2|, |𝜇3
′ − 𝜇3|) 

𝛥𝜇 =
1

4
∑ 𝛿𝜇𝑛

3

𝑛=0

 

𝛿𝜎 = ((𝜎𝑟
∗ − 𝜎𝑟)2, (𝜎𝑝

∗ − 𝜎𝑝)
2

, (𝜎𝑦
∗ − 𝜎𝑦)

2
) 

𝛥𝜎 =
1

3
∑ 𝛿𝜎𝑖

2

𝑖=0

 

𝛥𝜎 ← √𝛥𝜎 
𝑟𝑡 = −(α ∗ Δμ + Δσ) 

  Set(𝜇0, 𝜇1, 𝜇2, 𝜇3) ← (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′ ) 

  return 𝑟𝑡 

 end 

end 

 

 

5 EXPERIMENTAL EVALUATION 
 

We have simulated our proposed algorithm on two 

reinforcement learning algorithms to compare the 

performance of the two algos on the attitude control problem. 

In the coming sections, we discuss the simulation settings and 

the results obtained. 
 

5.1 Simulation Settings 

 

Open AI Gym is a set of reinforcement learning 

environments that can be used to test different deep 

reinforcement learning algorithms. We have deployed 

GymFC, a flight controller environment built using Open AI 

Gym. GymFC requires Ubuntu 18.04. The flight simulator 

required for GymFC is Gazebo and we use Gazebo v10.1.0. 

The model of the quadcopter is created in a .sdf file which the 

environment accesses. We use Dynamic Animation and 

Robotics Toolkit (DART) version 6.7.0 which is a physics 

engine. DART provides Gazebo the data structures and 

algorithms for calculating the motion dynamics. Open AI 

Gym has the reinforcement learning algorithms' baselines. We 

have forked DDPG and PPO from the GitHub page of Open 

AI Gym to test our algorithm. 
 

5.1.1 PPO settings 

 

Table 1. Hyperparameters deployed by the PPO Agent 

 

Hyperparameter Value 

Horizon(T) 500 

Adam Stepsize 1 × 10-4×  ρ 

Num. Epochs 5 

Minibatch Size 32 

Discount Factor ( γ) 0.99 
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GAE Parameter 0.95 

Notes: Value of 𝜌 reduces gradually from 1 to 0 during training 

The agent consists of a neural network where the input 

layer has six nodes, the output layer has four and there are two 

hidden layers each having 32 nodes. For a problem of 

continuous domain like ours, the neural network's output is a 

Gaussian distribution mean and varying standard deviation (as 

per [25]). We have stuck to the standard hyperparameters 

defined in the paper, as shown in the below table 1. 
 

5.1.2 DDPG settings 
 

For DDPG, the first hidden layer has 400 nodes and the 

second hidden layer has 300 nodes. We use ReLU activation 

function for the hidden layers and Tanh for the outer layer. 

The weights and biases of the final layer of the actor and critic 

have been initialized in the range −3 × 10-3 to 3 × 10-3. 
 

Table 2. Hyperparameters used by the DDPG Agent 

 

Hyperparameter Value 

Adam Stepsize (actor) 1 * 10-4 

Adam Stepsize (critic) 1 * 10-3 

Size of Minibatch   64 

L2 weight decay for Q(critic) 10-2 

Smoothing constant (𝜏) 0.001 

Size of replay buffer 106 

Discount Factor (𝛾) 0.99 

 

5.1.3 Other settings and evaluation metrics 

 

For Ornstein Uhlenbeck Noise [28], we have taken the 

following values: 𝜇=0, 𝜎=0.3 and 𝜃=0.15. The training of the 

model for the two reinforcement learning algorithms was 

performed for 10 million steps each. The simulation was 

performed on a four core i5-8250U processor system running 

Ubuntu 18.04 operating system. Our code creates checkpoints 

every 100,000 steps. Thus, altogether, we created 100 

checkpoints for each of the runs and used these checkpoints to 

measure the performances of the PPO algorithm against the 

DDPG algorithm. In order to create graphs, we used Tensor 

Flow 1.14.  

The evaluation and comparison of DDPG and PPO 

using our EEAC algorithm to test attitude control of 

quadcopters was done on the following four parameters: 
 
Reward 

 

The reward function, the heart of any reinforcement 

learning algorithm, is the change in quadcopter motor speeds 

and the difference in angular velocity values. We compare 

DDPG and PPO using the reward function and evaluating on 

the following metrics: 
 

 Mean Absolute Error (MAE) – It is the difference 

between the current and target angular velocities. 

 Average Motor Velocities (RPM values) - The mean 
value of the quadcopter motor velocities. 

 Average Change in Motor Velocities - Mean 
difference between the motor velocity of the previous 

and current time step. 

 Average Reward - The output given by EEAC at the 
end of each episode. 

 

Energy efficiency 
 

We calculate energy using the formula [29]: 
 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐸) = 𝐶𝑃𝜌𝑛3𝑑5 
 

where 𝐶𝑃(Energy consumption co-efficient) = 2𝜋𝐶𝑄 and 𝐶𝑄 

represents torque co-efficient and 𝐶𝑄 = 1.38 × 10−3 

in GymFC.𝜌(Atmospheric density) = 1.275𝑘𝑔/𝑚3 at zero 

celsius temperature and at sea level [30][31],  

n represents propeller speed, d (Propeller diameter) =10𝑐𝑚𝑠 

 (This simulation uses PX4 Gazebo simulation plugins whose 

diameter(𝑑) = 10𝑐𝑚𝑠) 

 

5.2 Results and analysis 

 

We describe the results obtained through graphs. The 

Mean Absolute Error (MEA) (shown in Fig. 4 (a)) is the 

angular velocity difference.  
 

 
Fig. 4 Reward comparison between PPO and DDPG 
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MEA values at the start of the simulation are more for PPO 

than for DDPG. Till about 4 million timesteps, the MAE 

values are more for PPO, thereafter the values are less and 
continue so till the end of our simulation. 

 
In Fig. 4(b), the average velocity of the four motors is 

compared for both the algorithms. The values remain similar 

till around 4 million time steps, after which the average motor 
velocities for DDPG are less as compared to PPO. So, in this 

metric, DDPG scores better. 

 
Figure 4(c) displays the graph of the average changes in 

RPM values of the motors by taking the average value of the 
four motors and then finding the change in the current average 

and the previous average. The graph shows frequent changes 

in average RPM values for DDPG. The changes are much less 
in PPO. As the algorithms start converging, the spurts in graph 

become more pronounced.  

 
In Fig. 4(d), we display the average reward values at each 

timestep. The y-axis is represented as a log scale. During the 
start of the simulation, as MEA values of both the algorithms 

reduce, the reward values increase. As the algorithms try 

reducing energy consumption, the reward values go negative. 
PPO algorithm starts converging sooner than DDPG. We 

observe from the graph that around 7.5 million steps, PPO 

algorithm starts converging. DDPG starts converging later at 
around 9 million steps. Being off policy, we expected that 

DDPG would start converging later and our results proved 
this.  

 

A comparison of the energy consumed by both the 

algorithms has been shown in Fig. 5. 
 

 
 
Fig. 5 Energy efficiency comparison between PPO and DDPG 

 

During the training process, we had created 100 

checkpoints and the graph plots the energy consumption 

values at each of these checkpoints. As can be observed from 

the graph, the energy consumed by PPO remains almost 

constant throughout the run. The graph shows energy 

consumption in DDPG to be more than that obtained in PPO. 

The changes in energy consumption values across checkpoints 

is also highly varied for DDPG and is much lesser in PPO. 

Energy consumption values are around 2.475e8 in PPO and 

are in the range of 2.475e8 and 2.575e8 in DDPG. Looking at 

the graph, we can safely claim PPO to give better results than 

DDPG in the attitude control problem. 
 

6 CONCLUSION 
 

In this paper, we have attempted handling the attitude 

control problem in quadcopters. Attitude control consumes a 

lot of energy and we have used reinforcement learning 

algorithms to minimize this consumption. We had created an 

EEAC algorithm and we used that algorithm in this paper to 

test the performance of PPO and DDPG, two of the state of 

the art reinforcement learning algorithms. We compared mean 

absolute error, change in motor velocities and energy 

consumption. We found PPO performing better than DDPG in 

the above metrics. The on-policy technique adopted by PPO 

was the major cause that tilted the results in its favour. Also, 

the clipping function, a key differentiator between PPO and 

the other reinforcement learning algorithms was also critical 

in giving us an output better than the one given by DDPG. 

We feel that this research work can further be used to 

test the navigational control problem. Navigation control is 

another field where quadcopter energy depletes fast. We 

would be keen to test the performances of PPO and DDPG to 

handle navigation control. If we can come up with an 

algorithm just like EEAC that integrates navigation control 

and attitude control, we can have a complete reinforcement 

learning solution for quadcopter movements.  

While simulating our work, we had disabled the feature 

of gravity on Gazebo, the simulator we had used. 

Incorporating gravity presents a whole lot of issues that can be 

explored independently or in sync with the attitude control 

and navigation control problems. 
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