

©2012-21 International Journal of Information Technology and Electrical Engineering

20
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

Comparing the performance of Reinforcement Learning Algorithms in
Reducing Energy Consumption during Quadcopter Attitude Control

1
Varun Agarwal and

2
Rajiv Ranjan Tewari

1Centre of Computer Education, IPS, University of Allahabad, Allahabad, India

2Department of Electronics and Communication, University of Allahabad, Allahabad, India

E-mail: 1varunag18@gmail.com, 2tewari.rr@gmail.com

ABSTRACT

The rotational motion of quadcopters is referred to as attitude control. It is a high energy consuming task. We propose using

deep reinforcement learning to automate the attitude control process. We test the performance of two deep reinforcement

learning algorithms Proximal Policy Optimization (PPO) and Deep Deterministic Policy Gradients (DDPG) on the reward

function designed to prioritize minimization of energy consumption. Since the moving parts of the quadcopter are only the

motor/propellers, hence they consume the maximum energy and our reward function is created to optimize their movements.

Our simulations using DDPG and PPO on an Open AI Gym environment show that PPO performs better in our energy

optimization problem.

Keywords: attitude control, quadcopters, reinforcement learning, energy efficiency, proximal policy optimization, deep deterministic policy

gradients

1. INTRODUCTION

Quadcopters, a class of Unmanned Aerial Vehicles

(UAVs), are finding uses in tasks like parcel deliveries, aerial

photography, relief in disaster affected areas, surveillance, etc.

UAVs can be either fixed wing or multirotors. Given the

advantages of multirotors like the ability to hover, they have

been researched more than fixed wing UAVS. Quadcopters is

a class of multirotors having four wings/motors. Other

variations include six motors, eight motors, etc. However,

their capability of carrying weight is much restricted as

compared to fixed wing UAVs. Batteries, the source of energy

to a quadcopter, are a major portion of its weight. Thus,

minimizing the energy depletion is a critical requirement to

enhance the flight duration of a quadcopter. There are six

degrees of freedom to a quadcopter - three rotational defined

by the three axes in which a quadcopter can rotate and three

translational defined by the motion from one place to another

in the 3D space.

Fig. 1 Quadcopter's Roll, Pitch & Yaw Movements [1]

This movement, rotational or translational or both, is

brought about by the rotors which are the only moving parts

of a quadcopter. Altering the speed of the four rotating motors

brings about the change in its position.

The angle at which a UAV flies relative to the ground

is known as its attitude. The three axes of rotation of a

quadcopter are the roll, pitch and yaw. Roll is the rotation

about its longitudinal axis. When the quadcopter rotates

laterally, it is called the pitch while yaw is the rotation when a

quadcopter rotates in the clockwise or anticlockwise direction

while remaining level to the ground. (Refer to Fig. 1).

Managing the rotation of the roll, pitch and yaw axes

controls the overall quadcopter rotation and is called attitude

control. Thus, a change in attitude simply requires changing

the rotational speeds of the motors. Following a set pattern or

combination in terms of the speeds of the individual motors

can result in achieving attitude control. Now, this speed of

rotation of the motors can be either managed by a human

(which is an expensive proposition) or can be fed into the

system from the start (which makes the system non robust and

unable to adapt to environmental changes). The disadvantages

of each of the above methods bring us to the novel idea of

harnessing the ability of artificial intelligence in governing the

quadcopter's movements.

We propose the use of Deep Reinforcement learning, a

branch of artificial intelligence, for achieving attitude control

while minimizing energy consumption in quadcopters.

Reinforcement learning is a technique where objects learn

from experience. The different components that make up a

quadcopter include a flight controller, radio receiver, battery,

and four arms. Each of the arms has an Electronic Speed

Controller (ESC), motor and a propeller. The flight controller

is made up of the Global Positioning System, Inertial

Measurement Unit (IMU) while the IMU is itself made up of

the Gyroscope, Magnetometer, Accelerometer, etc.

mailto:1varunag18@gmail.com
mailto:tewari.rr@gmail.com

©2012-21 International Journal of Information Technology and Electrical Engineering

21
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

The Gyroscope records the roll, pitch and yaw values

and hence our study shall be focused on it. Each of the ESCs

passes the speed instructions to their respective motors driving

the propellers. Thus, the ESCs dictate the rotational speeds

and manage the attitude which is then measured by the

Gyroscope.

In reinforcement learning, there is a problem with a set

of probable solutions to that problem [2]. Reinforcement

learning algorithms are designed to select one action out of

the available options in order to maximize the output.

Reinforcement learning maps situations to actions so as to

achieve the best reward. Using deep reinforcement learning,

deep neural networks are used to create an understanding of

the world and then act upon it. The learning takes place

through experience, i.e. the system is not trained by a human.

Reinforcement learning is a closed loop technique where the

output of one step becomes the input of the next. It is used in

problems where the entire task is divided over multiple steps

and decision making takes place sequentially.

Our contribution, in this research, can be broadly stated

as: -

1. Selecting our Energy Efficient Attitude Control (EEAC)

algorithm and applying it on quadcopter attitude control using

an Open AI Gym environment.

2. Applying Deep Deterministic Policy Gradients (DDPG)

and Proximal Policy Optimization (PPO) on the quadcopter

attitude control problem.

3. Comparing the performances of both the techniques and

displaying the results.

2. RELATED WORK

 Across the literature, attitude control has been

handled as a standalone problem or along with navigation

control. We, first, discuss some papers tackling attitude

control alone.

 Pitch control has been tested by Jiang et al. [3] by

implementing Aggregated Multi Reinforcement Learning.

Alexis et al. [4] consider the influence of wind and other

factors. The effect of drag and thrust are considered. [5] maps

sensory data into motor velocity values. A deterministic, on-

policy approach has been used. Lambert et al. [6] make

changes in firmware, model adaptations and system design to

deal with system and dynamic limitations.

 Next, we shall discuss papers where attitude control

is dealt as an inner loop and navigation control as the outer

loop of the entire problem. Abbeel et al. in [7] use a hybrid

algorithm on an approximate model. Real world scenarios are

used to test the policy. A two host methodology is the

approach used by Santos et al. in [8] where one host runs

control loops and the other host runs the robot model. A

Proportional Derivative equation is used to link linear

acceleration and attitude control in [9]. TEXPLORE

implements decision trees and forests to create learned models

in [10].

 Rodriguez-Ramos et al. [11] implement vision based

landing using cameras, sensors and Inertial Measurement

Units (IMUs). Li et al. [12] suggest a comprehensive

reinforcement learning algorithm that is quarternion based. In

[13], Nie et al. propose pitch angle in terms of velocity of

quadcopter. AirSim's Woodland package has been used in

[14] with two convolutional neural networks. In [15], a two

step approach is deployed in which the weight of the centre of

quadcopter and its inertial matrix is considered while

calculating attitude control. In [16], Bekal et al. use Deep

Deterministic Policy Gradients (DDPG) for pitch control and

Proportional Integral Derivative (PID) controllers for roll and

yaw. In [17], Proximal Policy Optimization (PPO) is used.

Zhou et al. [18] present attitude control in mathematical terms

implementing feedback linearization and using different

channels for pitch, roll and yaw.

The rest of the paper is organized as follows: Section 3

details the terms used in our work. Section 4 is dedicated to

the implementation details. In section 5, we evaluate our

experiments and display results while the last section is used

for the conclusion remarks.

3. METHODOLOGY

 Here, we discuss the ideas employed in this research

along with the terms used.

Fig. 2 Interaction between agent and environment in Reinforcement

learning [19]

3.1 Terms used in Deep Reinforcement Learning

3.1.1 Agent(Fig. 2)

The agent is the heart of the deep reinforcement

learning process. It is the neural network consisting of an

input layer, an output layer and multiple hidden layers. A

layer consists of nodes called neurons and has an activation

function [2].

3.1.2 Action

Depicted by 𝐴𝑡 ∈ 𝒜(𝑆𝑡), action is the output of the

agent. (𝑆𝑡)denotes one of the states of the environment and is

discussed later. The action may be an action value function

(𝑞π(𝑠, 𝑎)) or a state value function (𝑣π(𝑠)). The value function

defines how good an action or state is. The agent, at each step,

creates a mapping between states and the probabilities of

selecting an action. This mapping is called the policy.

©2012-21 International Journal of Information Technology and Electrical Engineering

22
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

3.1.3 Policy

The policy is denoted by 𝜋𝑡 or 𝜋𝑡(𝑎|𝑠), implying that

𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠. A policy is: -

 Deterministic:
Deterministic policies have a single action for a state.

It is possible in environments having no uncertainty.

𝜋𝑡(𝑠) = 𝑎𝑡

 Stochastic:
Used in uncertain environments, stochastic policies

have a probability distribution over actions.

𝜋𝑡(𝑎|𝑠) = 𝒫(𝑎𝑡|𝑠𝑡)

3.1.4 Environment:

Anything external to the neural network is the

environment. The agent interacts with it by sending the action

and receiving the response. The quadcopter is the

environment, in our case.

3.1.5 State:

It is the condition the environment is in. It forms the

input of the agent.

3.1.6 Reward:

The reward is a number returned by the environment as

a response to the agent's input. The agent tries to maximize

the value of the reward at the end of the process. The reward

is a function of the action taken by the agent and the current

state of the environment.

The agent, depending on its representation of the state

and the reward, creates a model.

Reinforcement learning algorithms are of two kinds.

Model based:

The agent estimates a model of the environment and

decides the future plan based on how its actions change the

environment. Model based approaches are very sample

efficient. It is used in reinforcement learning algorithms used

in playing games like Chess, Go, etc.

Model free:

Here, the model of the environment is not created.

Such reinforcement learning algorithms can be:

 Value Based:

Here, value based agents decide the goodness of an
action performed at a given state and that model is used to

behave optimally. Value based agents do not learn the

policy, instead they focus on how good a state is and
depending on that, select a policy. This method is adopted

only in the case of deterministic policies.

 Policy Based:

The policy function, that maps states and actions, is
learnt. The action is learnt without focusing on the value

function. This method can be used in stochastic policies

as well.

3.2 Discrete and continuous action spaces

There are certain areas where reinforcement learning

algorithms have given astonishing results. Computer games,

Go and Chess are some of the problems solved effectively

using Deep Q Network (DQN) algorithm [20], [21] and [22].

DQN is useful to solve problems having discrete action spaces

and low dimensions. The problem of attitude control is high

dimensional and works in a continuous action space. Lillicrap

et al. in [23] gave Deep Deterministic Policy Gradients

(DDPG), a landmark algorithm applying the concept of DQN

on continuous control problems.

3.3 Policy gradient

Policy gradient approach is used in on-policy

problems. The policy space is optimized so that actions that

give higher rewards have a better probability of being selected

and actions that lead to low rewards are rarely performed. The

policy network takes the environment's space as the input and

outputs an estimate of the different actions' probabilities. 𝐽(θ),

the expected reward, is the product of the probability of

trajectory and the corresponding reward.

 𝐽(𝜃) = ∑ 𝒫

𝜏

(𝜏; 𝜃)𝑅(𝜏)

where θ denotes the policy employed to create trajectory τ,

and
τ = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑡 , 𝑎𝑡)

Now, a value of θ for maximizing the reward.

max
𝛳

𝐽(𝜃) = max
𝛳

∑ 𝜏 𝒫(τ; θ)𝑅(τ)

Since policy gradient approaches directly learn the

policy, they work in complex environments where DQN

approaches fail. They converge faster and can learn stochastic

policies, a place where value based approaches fail. They are

also effective in continuous action spaces.

However, they are very unstable and not sample

efficient. In case rewards are delayed, their credit assignment

is also poor. As newer policy gradient techniques are

proposed and researched, we have to avoid actions that lead to

less optimal results as one wrong decision affects the

remaining process of optimization.

3.4 Role of IMU and ESC

For the implementation of EEAC on PPO and DDPG,

we have relied on Open AI Gym environment which provides

©2012-21 International Journal of Information Technology and Electrical Engineering

23
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

the set of environments for testing reinforcement learning

algorithms. We have used GymFC, an Open AI Gym based

flight controller environment. As is the standard, it has an

action space and an observation space. The action space

consists of the reinforcement learning algorithm's instructions

to the quadcopter while the observation space is the output of

the quadcopter which is received by the agent.

A component called Gyroscope within the Inertial

Measurement Unit (IMU) records and sends the angular

velocity 𝜎(𝑡) of the quadcopter at each step. 𝜎(𝑡) =

[𝜎𝜙(𝑡), 𝜎𝜃(𝑡), 𝜎𝜓(𝑡)] where 𝜎𝜙(𝑡), 𝜎𝜃(𝑡) 𝑎𝑛𝑑 𝜎𝜓(𝑡) are the

angular velocities of each of the roll, pitch and yaw axes. The

Electronic Speed Controllers (ESCs) record the speed of

rotations of the four motors 𝜇(𝑡) =
[𝜇0(𝑡), 𝜇1(𝑡), 𝜇2(𝑡), 𝜇3(𝑡)]
where 𝜇0(𝑡), 𝜇1(𝑡), 𝜇2(𝑡) and 𝜇3(𝑡) are individual motor

speeds measured in Revolutions per Minute (RPMs). When
the agent receives these values, it applies the reinforcement

learning algorithm to come up with a response which consists

of Pulse Width Modulation (PWM) signals 𝑎(𝑡) =
[𝑎0(𝑡), 𝑎1(𝑡), 𝑎2(𝑡), 𝑎3(𝑡)]. These instructions are sent to the

ESCs.

3.5 Neural Networks

The function of the agent where it takes a state as input

and provides an action as the output can be represented in the

form of a table where the x axis represents possible actions

and y axis denotes the set of states. The cells of the table

would denote the received reward. The reinforcement learning

algorithm updates this table at each step while following a

policy. However, multi-dimensional problems in continuous

spaces cannot be represented in a table of viable size as the

number of possibilities are many. Hence, the need of deep

reinforcement learning. The deep part is constituted by the

neural network consisting of an input and output layer along

with multiple hidden layers. The purpose of the neural

network is to sum together all the information that has been

accessed by the agent in the past and use it to come up with

information that is useful for the task to be done. The agent

gets trained in this process to act in a real world scenario.

3.6 Layers and activation function

Each of the layers of the neural network has nodes

called neurons and it is the place where the computation takes

place (Fig. 3). The neurons are such called because they

mimic the behaviour of the neurons of the human brain which

perform an action when triggered by a stimulus of sufficient

proportion.

A neuron takes the product of the input xi and the

weight wi. The weight magnifies or reduces the input,

depending on the amount of significance each input needs to

be given. The sum of all such products is then sent through an

activation function 𝑓(∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖), which decides whether to

allow or disallow a signal to pass through. Commonly used

activation functions are Tanh, ReLU, Sigmoid, etc.

Fig. 3 (a) A neuron 3 (b) A neural network having multiple

layers [24]}

3.7 Deep Deterministic Policy Gradients (DDPG)

Q learning or DQN cannot handle continuous action

spaces. It outputs only a discrete number of actions.

However, we need continuous action spaces as the PWM

commands have to be sent by the agent to the ESCs. It is

inappropriate to discretize the continuous action spaces as the

six degrees of freedom of the quadcopter would lead to too

many discrete action spaces.
However, innovations to Q learning can be applied to the actor

critics methods. In DDPG [23], we use

Replay Memory

Instead of learning just from the current state the agent

is experiencing, it keeps track of the total of all experiences

and randomly samples some batch of memories to update the

weights of the deep neural networks.

Target Network

Use one network to determine the actions to take and

then use another network to determine the value of that action.

That value is used to update the weights of the deep neural

networks. When we use the same network to do both the

things, we are chasing a rapidly changing target because the

weights are getting updated. So, the valuation of similar states

changes rapidly over the course of simulation, causing the

learning to be unstable. So, we use two networks - one to

choose actions at each timestep and the other to evaluate the

effectiveness of those actions while updating the weights.

DDPG is off policy, i.e. we use a separate policy to get

the data and use the data to update a different policy,

©2012-21 International Journal of Information Technology and Electrical Engineering

24
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

performing a soft copy of the target networks. We have two

target networks in DDPG because DDPG is an actor critic

method. So there are two distinct networks, one for the actor

and one for the critic. So, overall we will have four networks -

one actor, one critic, one target actor and one target critic. The

critic network evaluates state action pairs. The actor network

decides what to do based on the current state. The actor

network outputs action values and not probabilities. This is

because DDPG is deterministic, hence the algorithm leads to

the same state over and over again and we get the same action

from the agent. However, the problem with this approach is

that the agent has an explore-exploit dilemma. It aims to

understand the environment by exploration or try to follow a

chosen path by exploiting the achieved knowledge. This is

implemented in DDPG by including noise into the system.

The update rule for the actor is denoted by the equation [23]
below.

𝛻𝜃𝜇𝐽 ≈ 𝐸𝑠𝑡∼𝜌𝛽 [𝛻𝜃𝜇𝑄(𝑠, 𝑎|𝜃𝑄)|
𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇

)]

The above equation shows the expectation value or the

average of the gradient of the critic network, where we input

some states and actions and the action is chosen based on the

current policy. So, we sample states randomly from the

memory and then the actor network decides what actions to

take based on those states. Then the actions and states from

the actor are plugged into the critic to take its reaction on the

quality of the actions. We, then take the gradient of the critic

network with respect to the parameters of the actor network
Updating the critic network by minimizing the loss

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃𝑄))

2

𝑖

𝛻𝜃𝜇𝐽 ≈
1

𝑁
∑ 𝛻𝑎

𝑖

𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)𝛻𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖

The loss function is a mean squared error of the

difference between target value 𝑦𝑖 and the Q for the current

state and action. We randomly sample states, new states,

actions and rewards. We use the target actor to determine

actions for the new states. The actions are plugged into the

target critic to get the target y and multiply it with the discount

factor 𝛾 and add a reward of that timestep. We then plug the

states and actions into the critic and take the difference with

the target.

In order to handle the updates of the target networks,

the actor and critic networks are initialized with some random

parameters and the same values are copied to the target actor

and critic networks also. This is the only instance of a hard

copy. The rest of the time, a soft copy is done to update the

target.

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

3.8 Proximal Policy Optimization (PPO)

PPO is an on-policy technique, so the agent learns

directly from its interactions with the environment. It is also

based on policy gradient. Just like DDPG, PPO also uses the

actor critic approach. Here, the actor network is policy based

while the critic is value based.

In PPO [25], policy gradient loss is defined as the

average(expectation) of the log of policy multiplied by the

advantage function.

𝐿𝑃𝐺(𝜃) = 𝐸𝑡̂[𝑙𝑜𝑔 𝜋𝜃 (𝑎𝑡|𝑠𝑡)𝐴𝑡̂]

The advantage function is a measure of the goodness of

an action. It compares the current action with the average

action. The discounted set of rewards provide the baseline

estimate for the advantage function.

𝐴𝑡̂ = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1

𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)

A positive advantage function increases the probability

of performing a given action when a particular state is

observed. The problem with this approach is that if we keep

on running gradient descent on a particular batch of states, we

might go out of range and get practically incorrect results. So,

the aim is to make small changes. Trust Region Policy

Optimization (TRPO) [26], a predecessor to PPO, added KL

constraint (Kullback-Leibler). PPO improves this technique

by adding a constraint to the optimization objective directly.

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸𝑡̂[𝑚𝑖𝑛(𝑟𝑡(θ)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴𝑡̂)]

In PPO, a value function error is added to the policy

function. In order to promote exploration, an entropy bonus

has been added.

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(θ) = 𝐸𝑡̂[𝐿𝑡

𝐶𝐿𝐼𝑃(θ) − 𝑐1𝐿𝑡
𝑉𝐹(θ) + 𝑐2𝑆[πθ](𝑠𝑡)]

Thus, PPO manages to improve the performance achieved by

reducing the policy update values to a given range. Its simple

objective function further reduces performance overhead.

4 IMPLEMENTATION OF ENERGY

EFFICIENT ATTITUDE CONTROL

In this section, we implement our Energy Efficient

Attitude Control (EEAC) algorithm [27] on two deep

reinforcement learning algorithms DDPG and PPO and

compare the results of both the approaches. We added

Ornstein Uhlenbeck noise [28] to the action space. Noise

facilitates better exploration by adding uncertainty.

𝜋′(𝑠𝑡) = 𝜋(𝑠𝑡|𝜃𝑡
𝜋) + 𝒩

©2012-21 International Journal of Information Technology and Electrical Engineering

25
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

𝜋′(𝑠𝑡)denotes the exploration policy obtained when noise 𝒩is

added to the policy𝜋(𝑠𝑡|𝜃𝑡
𝜋). To facilitate better exploration,

temporally correlated noise has been used. Parameters used

are 𝜃 = 0.15 and 𝜎 = 0.3 and have been kept the same in both

DDPG and PPO. While working on the attitude control
problem, we identified the key areas where energy was used

the most during attitude control. The only moving parts of the

quadcopter were the propellers and the motors driving them.
Thus, if we had to reduce energy depletion, we would need to

avoid running the motors at high speed. Also, the variations in
speeds of motors needed to be minimized. Focussing on the

energy aspect, we had written EEAC algorithm and now we

expand the scope of the algorithm by comparing its
performance on two of the landmark deep reinforcement

learning algorithms - DDPG and PPO.

4.1 Proposed algorithm for Energy Efficient Attitude

Control

In EEAC, we train the system to achieve a target

angular velocity 𝜎∗ (where 𝜎∗=𝜎𝑟
∗, 𝜎𝑝

∗, 𝜎𝑦
∗ corresponding to the

roll, pitch and yaw axes) while reducing energy consumed in

the process. At the start of each episode, this angular velocity

is initialized and the algorithm aims to achieve this target

value while maximizing the reward (or, minimize a negative

reward). The algorithm runs a loop in ordered to minimize the

negative reward so that reward 𝑟𝑡 → 0. Inside the loop, action

𝑎𝑡 is initialized with the output of the reinforcement algorithm

used, with the Pulse Width Modulation values 𝑦𝑖 (where 𝑖 →

0 to 3) for all the four motors. Thereafter, noise 𝒩is added to

it. This action value is sent to the environment and the state

𝑠𝑡+1 received from it. This state value consists of the present

angular velocity and is a three-member value for each of the

roll, pitch, yaw axes and the present RPM values of the four

motors. The difference of the motor speed values obtained

from the environment from two epochs is calculated and the

average of this difference stored in 𝛥𝜇.Thereafter, the angular

velocities received in 𝑠𝑡+1 are taken and subtracted from the

target velocity values. The difference values of each of the

three axes are squared, summed and the square root of the

same stored in 𝛥𝜎. The difference between the RPM values of

the motors and the value of angular velocity is treated as a

penalty that needs to be minimized. The algorithm multiplies

a constant 𝛼 to the motor velocity difference 𝛥𝜇 and then add

Δ𝜎, the angular velocity difference. To show that it is a

penalty, the algorithm assigns a negative sign to it, with the
intention of minimizing it. As a last step, the current values are

updated on the previous copy of RPM values for the next
epoch.

Algorithm 1: Energy efficient attitude control (EEAC)

for episode:=1,....,N do

 Initialize 𝑎𝑡, 𝜎, 𝜇;

 Initialize the environment and receive initial state 𝑠1;

 Initialize 𝜎∗={ 𝜎𝑟
∗, 𝜎𝑝

∗, 𝜎𝑦
∗};

 for timestep t:=1,....,T do

 Generate an action 𝑎𝑡 = (𝜇0, 𝜇1, 𝜇2, 𝜇3)

 𝑎𝑡 ← 𝑎𝑡 + 𝒩where 𝒩 is Ornstein Uhlenbeck noise

 Send action 𝑎𝑡to the environment and receive state𝑠𝑡+1

𝑠𝑡+1 = {(𝜎𝑟 , 𝜎𝑝, 𝜎𝑦), (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′)}

𝜎 = (𝜎𝑟 , 𝜎𝑝, 𝜎𝑦)

𝜇′ = (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′)
𝛿𝜇 = (|𝜇0

′ − 𝜇0|, |𝜇1
′ − 𝜇1|, |𝜇2

′ − 𝜇2|, |𝜇3
′ − 𝜇3|)

𝛥𝜇 =
1

4
∑ 𝛿𝜇𝑛

3

𝑛=0

𝛿𝜎 = ((𝜎𝑟
∗ − 𝜎𝑟)2, (𝜎𝑝

∗ − 𝜎𝑝)
2

, (𝜎𝑦
∗ − 𝜎𝑦)

2
)

𝛥𝜎 =
1

3
∑ 𝛿𝜎𝑖

2

𝑖=0

𝛥𝜎 ← √𝛥𝜎
𝑟𝑡 = −(α ∗ Δμ + Δσ)

 Set(𝜇0, 𝜇1, 𝜇2, 𝜇3) ← (𝜇0
′ , 𝜇1

′ , 𝜇2
′ , 𝜇3

′)

 return 𝑟𝑡

 end

end

5 EXPERIMENTAL EVALUATION

We have simulated our proposed algorithm on two

reinforcement learning algorithms to compare the

performance of the two algos on the attitude control problem.

In the coming sections, we discuss the simulation settings and

the results obtained.

5.1 Simulation Settings

Open AI Gym is a set of reinforcement learning

environments that can be used to test different deep

reinforcement learning algorithms. We have deployed

GymFC, a flight controller environment built using Open AI

Gym. GymFC requires Ubuntu 18.04. The flight simulator

required for GymFC is Gazebo and we use Gazebo v10.1.0.

The model of the quadcopter is created in a .sdf file which the

environment accesses. We use Dynamic Animation and

Robotics Toolkit (DART) version 6.7.0 which is a physics

engine. DART provides Gazebo the data structures and

algorithms for calculating the motion dynamics. Open AI

Gym has the reinforcement learning algorithms' baselines. We

have forked DDPG and PPO from the GitHub page of Open

AI Gym to test our algorithm.

5.1.1 PPO settings

Table 1. Hyperparameters deployed by the PPO Agent

Hyperparameter Value

Horizon(T) 500

Adam Stepsize 1 × 10-4× ρ

Num. Epochs 5

Minibatch Size 32

Discount Factor (γ) 0.99

©2012-21 International Journal of Information Technology and Electrical Engineering

26
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

GAE Parameter 0.95

Notes: Value of 𝜌 reduces gradually from 1 to 0 during training

The agent consists of a neural network where the input

layer has six nodes, the output layer has four and there are two

hidden layers each having 32 nodes. For a problem of

continuous domain like ours, the neural network's output is a

Gaussian distribution mean and varying standard deviation (as

per [25]). We have stuck to the standard hyperparameters

defined in the paper, as shown in the below table 1.

5.1.2 DDPG settings

For DDPG, the first hidden layer has 400 nodes and the

second hidden layer has 300 nodes. We use ReLU activation

function for the hidden layers and Tanh for the outer layer.

The weights and biases of the final layer of the actor and critic

have been initialized in the range −3 × 10-3 to 3 × 10-3.

Table 2. Hyperparameters used by the DDPG Agent

Hyperparameter Value

Adam Stepsize (actor) 1 * 10-4

Adam Stepsize (critic) 1 * 10-3

Size of Minibatch 64

L2 weight decay for Q(critic) 10-2

Smoothing constant (𝜏) 0.001

Size of replay buffer 106

Discount Factor (𝛾) 0.99

5.1.3 Other settings and evaluation metrics

For Ornstein Uhlenbeck Noise [28], we have taken the

following values: 𝜇=0, 𝜎=0.3 and 𝜃=0.15. The training of the

model for the two reinforcement learning algorithms was

performed for 10 million steps each. The simulation was

performed on a four core i5-8250U processor system running

Ubuntu 18.04 operating system. Our code creates checkpoints

every 100,000 steps. Thus, altogether, we created 100

checkpoints for each of the runs and used these checkpoints to

measure the performances of the PPO algorithm against the

DDPG algorithm. In order to create graphs, we used Tensor

Flow 1.14.

The evaluation and comparison of DDPG and PPO

using our EEAC algorithm to test attitude control of

quadcopters was done on the following four parameters:

Reward

The reward function, the heart of any reinforcement

learning algorithm, is the change in quadcopter motor speeds

and the difference in angular velocity values. We compare

DDPG and PPO using the reward function and evaluating on

the following metrics:

 Mean Absolute Error (MAE) – It is the difference

between the current and target angular velocities.

 Average Motor Velocities (RPM values) - The mean
value of the quadcopter motor velocities.

 Average Change in Motor Velocities - Mean
difference between the motor velocity of the previous

and current time step.

 Average Reward - The output given by EEAC at the
end of each episode.

Energy efficiency

We calculate energy using the formula [29]:

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐸) = 𝐶𝑃𝜌𝑛3𝑑5

where 𝐶𝑃(Energy consumption co-efficient) = 2𝜋𝐶𝑄 and 𝐶𝑄

represents torque co-efficient and 𝐶𝑄 = 1.38 × 10−3

in GymFC.𝜌(Atmospheric density) = 1.275𝑘𝑔/𝑚3 at zero

celsius temperature and at sea level [30][31],

n represents propeller speed, d (Propeller diameter) =10𝑐𝑚𝑠

 (This simulation uses PX4 Gazebo simulation plugins whose

diameter(𝑑) = 10𝑐𝑚𝑠)

5.2 Results and analysis

We describe the results obtained through graphs. The

Mean Absolute Error (MEA) (shown in Fig. 4 (a)) is the

angular velocity difference.

Fig. 4 Reward comparison between PPO and DDPG

©2012-21 International Journal of Information Technology and Electrical Engineering

27
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

MEA values at the start of the simulation are more for PPO

than for DDPG. Till about 4 million timesteps, the MAE

values are more for PPO, thereafter the values are less and
continue so till the end of our simulation.

In Fig. 4(b), the average velocity of the four motors is

compared for both the algorithms. The values remain similar

till around 4 million time steps, after which the average motor
velocities for DDPG are less as compared to PPO. So, in this

metric, DDPG scores better.

Figure 4(c) displays the graph of the average changes in

RPM values of the motors by taking the average value of the
four motors and then finding the change in the current average

and the previous average. The graph shows frequent changes

in average RPM values for DDPG. The changes are much less
in PPO. As the algorithms start converging, the spurts in graph

become more pronounced.

In Fig. 4(d), we display the average reward values at each

timestep. The y-axis is represented as a log scale. During the
start of the simulation, as MEA values of both the algorithms

reduce, the reward values increase. As the algorithms try

reducing energy consumption, the reward values go negative.
PPO algorithm starts converging sooner than DDPG. We

observe from the graph that around 7.5 million steps, PPO

algorithm starts converging. DDPG starts converging later at
around 9 million steps. Being off policy, we expected that

DDPG would start converging later and our results proved
this.

A comparison of the energy consumed by both the

algorithms has been shown in Fig. 5.

Fig. 5 Energy efficiency comparison between PPO and DDPG

During the training process, we had created 100

checkpoints and the graph plots the energy consumption

values at each of these checkpoints. As can be observed from

the graph, the energy consumed by PPO remains almost

constant throughout the run. The graph shows energy

consumption in DDPG to be more than that obtained in PPO.

The changes in energy consumption values across checkpoints

is also highly varied for DDPG and is much lesser in PPO.

Energy consumption values are around 2.475e8 in PPO and

are in the range of 2.475e8 and 2.575e8 in DDPG. Looking at

the graph, we can safely claim PPO to give better results than

DDPG in the attitude control problem.

6 CONCLUSION

In this paper, we have attempted handling the attitude

control problem in quadcopters. Attitude control consumes a

lot of energy and we have used reinforcement learning

algorithms to minimize this consumption. We had created an

EEAC algorithm and we used that algorithm in this paper to

test the performance of PPO and DDPG, two of the state of

the art reinforcement learning algorithms. We compared mean

absolute error, change in motor velocities and energy

consumption. We found PPO performing better than DDPG in

the above metrics. The on-policy technique adopted by PPO

was the major cause that tilted the results in its favour. Also,

the clipping function, a key differentiator between PPO and

the other reinforcement learning algorithms was also critical

in giving us an output better than the one given by DDPG.

We feel that this research work can further be used to

test the navigational control problem. Navigation control is

another field where quadcopter energy depletes fast. We

would be keen to test the performances of PPO and DDPG to

handle navigation control. If we can come up with an

algorithm just like EEAC that integrates navigation control

and attitude control, we can have a complete reinforcement

learning solution for quadcopter movements.

While simulating our work, we had disabled the feature

of gravity on Gazebo, the simulator we had used.

Incorporating gravity presents a whole lot of issues that can be

explored independently or in sync with the attitude control

and navigation control problems.

REFERENCES

[1] H. Bou-Ammar, H. Voos and W. Ertel, "Controller

design for quadrotor UAVs using reinforcement

learning," 2010 IEEE International Conference on

Control Applications, Yokohama, 2010, pp. 2130-

2135, doi: 10.1109/CCA.2010.5611206

[2] R. S. Sutton and A. G. Barto, Reinforcement

learning: an introduction. Cambridge (Mass.): The

MIT Press., 2018.

[3] J. Jiang and M. S. Kamel, "Pitch Control of an

Aircraft with Aggregated Reinforcement Learning

Algorithms," 2007 International Joint Conference on

Neural Networks, Orlando, FL, 2007, pp. 41-46, doi:

10.1109/IJCNN.2007.4370928.

[4] K. Alexis, G. Nikolakopoulos and A. Tzes,

"Constrained optimal attitude control of a quadrotor

©2012-21 International Journal of Information Technology and Electrical Engineering

28
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

helicopter subject to wind-gusts: Experimental

studies," Proceedings of the 2010 American Control

Conference, Baltimore, MD, 2010, pp. 4451-4455,

doi: 10.1109/ACC.2010.5531005.

[5] J. Hwangbo, I. Sa, R. Siegwart and M. Hutter,

"Control of a Quadrotor With Reinforcement

Learning," in IEEE Robotics and Automation Letters,

vol. 2, no. 4, pp. 2096-2103, Oct. 2017, doi:

10.1109/LRA.2017.2720851.

[6] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine,

R. Calandra and K. S. J. Pister, "Low-Level Control

of a Quadrotor With Deep Model-Based

Reinforcement Learning," in IEEE Robotics and

Automation Letters, vol. 4, no. 4, pp. 4224-4230, Oct.

2019, doi: 10.1109/LRA.2019.2930489.

[7] P. Abbeel, M. Quigley, & A. Y. Ng. 2006. Using

inaccurate models in reinforcement learning. In

Proceedings of the 23rd international conference on

Machine learning (ICML '06). Association for

Computing Machinery, New York, NY, USA, 1–8.

DOI:https://doi.org/10.1145/1143844.1143845

[8] S. R. B. dos Santos, C. L. Nascimento and S. N.

Givigi, "Design of attitude and path tracking

controllers for quad-rotor robots using reinforcement

learning," 2012 IEEE Aerospace Conference, Big

Sky, MT, 2012, pp. 1-16, doi:

10.1109/AERO.2012.6187314.

[9] W. Lou and X. Guo, "Adaptive Trajectory Tracking

Control using Reinforcement Learning for

Quadrotor", International Journal of Advanced

Robotic Systems, vol. 13, no. 1, p. 38, 2016.

Available: 10.5772/62128 [Accessed 25 January

2021].

[10] N. Imanberdiyev, C. Fu, E. Kayacan and I. Chen,

"Autonomous navigation of UAV by using real-time

model-based reinforcement learning," 2016 14th

International Conference on Control, Automation,

Robotics and Vision (ICARCV), Phuket, 2016, pp. 1-

6, doi: 10.1109/ICARCV.2016.7838739.

[11] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, I. G.

Moreno and P. Campoy, "A Deep Reinforcement

Learning Technique for Vision-Based Autonomous

Multirotor Landing on a Moving Platform," 2018

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Madrid, 2018, pp. 1010-

1017, doi: 10.1109/IROS.2018.8594472.

[12] S. Li, P. Durdevic, and Z. Yang, “Optimal Tracking

Control Based on Integral Reinforcement Learning

for An Underactuated Drone”, IFAC-

PapersOnLine, 52(8), 2019, pp. 55-60,

doi.org/10.1016/j.ifacol.2019.08.048.

[13] C. Nie, Z. Zheng, and M. Zhu, “Three-Dimensional

Path-Following Control of a Robotic Airship with

Reinforcement Learning,” International Journal of

Aerospace Engineering, 25-Mar-2019. [Online].

Available:

https://www.hindawi.com/journals/ijae/2019/7854173

/abs/. [Accessed: 25-Jan-2021].

[14] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Obstacle

Avoidance Drone by Deep Reinforcement Learning

and Its Racing with Human Pilot,” Applied Sciences,

vol. 9, no. 24, p. 5571, 2019.

[15] T. Koning, “Low level quadcopter control using

Reinforcement Learning: Developing a self-learning

drone,” TU Delft Repositories, 01-Jan-1970.

[Online]. Available:

https://repository.tudelft.nl/islandora/object/uuid:0b9e

0796-13b5-42ba-b231-fbb6aadd5233. [Accessed: 25-

Jan-2021].

[16] C. Bekar, B. Yuksek, G. Inalhan, “High Fidelity

Progressive Reinforcement Learning for Agile

Maneuvering UAVs, AIAA SciTech Forum, 05-Jan-

2020. [Online]. Available:

https://arc.aiaa.org/doi/10.2514/6.2020-0898.

[Accessed: 25-Jan-2021].

[17] E. Bohn, E. M. Coates, S. Moe, and T. A. Johansen,

“Deep Reinforcement Learning Attitude Control of

Fixed-Wing UAVs Using Proximal Policy

optimization,” 2019 International Conference on

Unmanned Aircraft Systems (ICUAS), 2019.

[18] W. Zhou, K. Yin, R. Wang, and Y.-E. Wang, “Design

of Attitude Control System for UAV Based on

Feedback Linearization and Adaptive

Control,” Mathematical Problems in Engineering,

vol. 2014, pp. 1–8, 2014.

[19] R. Amiri, H. Mehrpouyan, L. Fridman, R. K. Mallik,

A. Nallanathan, and D. Matolak, “A Machine

Learning Approach for Power Allocation in HetNets

Considering QoS,” 2018 IEEE International

Conference on Communications (ICC), 2018.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.

Veness, M. G. Bellemare, and S. Petersen, “Human-

level control through deep reinforcement learning.

Nature”, 518(7540), 529-533, 2014.

http://dx.doi.org/10.1038/nature14236

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra, and M. Riedmiller,

https://doi.org/10.1016/j.ifacol.2019.08.048

©2012-21 International Journal of Information Technology and Electrical Engineering

29
ITEE, 9 (6) pp. 20-29, DEC 2020 Int. j. inf. technol. electr. eng.

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 9, Issue 6
December 2020

“Playing Atari with Deep Reinforcement

Learning,” arXiv.org, 19-Dec-2013. [Online].

Available: https://arxiv.org/abs/1312.5602.

[Accessed: 25-Jan-2021].

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L.

Sifre, G. V. D. Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, S.

Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.

Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.

Graepel, and D. Hassabis, “Mastering the game of Go

with deep neural networks and tree search,” Nature,

vol. 529, no. 7587, pp. 484–489, 2016.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.

Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous control with deep reinforcement

learning,” arXiv.org, 05-Jul-2019. [Online].

Available:https://arxiv.org/abs/1509.02971.

[Accessed: 25-Jan-2021].

[24] S. Vieira, W. H. Pinaya, and A. Mechelli, “Using

deep learning to investigate the neuroimaging

correlates of psychiatric and neurological disorders:

Methods and applications,” Neuroscience &

Biobehavioral Reviews, vol. 74, pp. 58–75, 2017.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, “Proximal Policy Optimization

Algorithms,” arXiv.org, 28-Aug-2017. [Online].

Available: https://arxiv.org/abs/1707.06347.

[Accessed: 25-Jan-2021].

[26] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P.

Moritz, “Trust Region Policy Optimization,” PMLR,

01-Jun-2015. [Online]. Available:

http://proceedings.mlr.press/v37/schulman15.

[Accessed: 25-Jan-2021].

[27] V. Agarwal, R. R. Tewari, “Improving Energy

Efficiency in UAV Attitude Control using Deep

Reinforcement Learning”, 2020. Manuscript

submitted for publication.

[28] G. E. Uhlenbeck and L. S. Ornstein, “On the Theory

of the Brownian Motion,” Physical Review Journals

Archive, 01-Sep-1930. [Online]. Available:

https://journals.aps.org/pr/abstract/10.1103/PhysRev.

36.823. [Accessed: 25-Jan-2021].

[29] A. Oosedo et al., "Design and simulation of a quad

rotor tail-sitter unmanned aerial vehicle," 2010

IEEE/SICE International Symposium on System

Integration, Sendai, 2010, pp. 254-259, doi:

10.1109/SII.2010.5708334.

[30] “US5904323A - Constrained store release

system,” Google Patents. [Online]. Available:

https://patents.google.com/patent/US5904323A/en.

[Accessed: 25-Jan-2021].

[31] F. E. Kidder and T. Nolan, The architects and builders

hand-book. New York: John Wiley & Sons, Inc.,

1921.

AUTHOR PROFILES

Varun Agarwal has completed his B. Tech and M. Tech in

Computer Science, has worked with Infosys Technologies Ltd.

and is currently pursuing his PhD from University of

Allahabad, Allahabad, India.

Prof. R. R. Tewari has been the former Head of Department,

Department of Electronics and Communication, University of

Allahabad. He has also been the former Dean Faculty of

Science and former Vice Chancellor of the University of

Allahabad. He has numerous journals and books to his name.

He has supervised many PhD students and been the principal

investigator in a lot of government sponsored research

projects.

